unstack_op.cc 4.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
D
dzhwinter 已提交
14

15 16 17
#include <memory>
#include <string>
#include <vector>
C
csy0225 已提交
18
#include "paddle/fluid/framework/infershape_utils.h"
19 20
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/for_range.h"
C
csy0225 已提交
21 22
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/unary.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

namespace paddle {
namespace operators {

class UnStackOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
};

class UnStackOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X", "The input of unstack op.");
    AddOutput("Y", "The output of unstack op.").AsDuplicable();
    AddAttr<int>("axis", "The axis along which Input(X) should be unstacked.")
        .SetDefault(0);
    AddAttr<int>("num", "The number of outputs(Y).").GreaterThan(0);
    AddComment(R"DOC(
      UnStack Operator.

      UnStack Input(X) into several tensors along Attr(axis).
    )DOC");
  }
};

H
hong 已提交
48 49
template <typename T>
class UnStackGradOpMaker : public framework::SingleGradOpMaker<T> {
50
 public:
H
hong 已提交
51
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
52 53

 protected:
54
  void Apply(GradOpPtr<T> op) const override {
55
    op->SetType("unstack_grad");
H
hong 已提交
56 57 58
    op->SetInput(framework::GradVarName("Y"), this->OutputGrad("Y"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
59 60 61 62 63 64 65 66 67
  }
};

class UnStackGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
    PADDLE_ENFORCE_GT(ctx->Inputs(framework::GradVarName("Y")).size(), 0,
68
                      platform::errors::InvalidArgument(
K
Kqnonrime 已提交
69
                          "The Inputs(Y@Grad) of unstack operator are empty."));
70 71
    OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output", "X",
                   "UnStackGrad");
72 73
    auto input_dims = ctx->GetInputsDim(framework::GradVarName("Y"));
    for (size_t i = 1; i < input_dims.size(); ++i) {
K
Kqnonrime 已提交
74 75 76 77 78 79 80
      PADDLE_ENFORCE_EQ(
          input_dims[i], input_dims[0],
          platform::errors::InvalidArgument(
              "The dimensions of all Inputs(Y@Grad) must be the same,"
              "but received Inputs(Y@Grad)'s %d-th dimension is %d, "
              "Inputs(Y@Grad)'s 0-th to %d-th dimension is %d.",
              i, input_dims[i], i - 1, input_dims[0]));
81 82 83 84
    }

    int axis = ctx->Attrs().Get<int>("axis");
    int rank = input_dims[0].size();
85 86 87 88 89 90 91 92 93 94
    PADDLE_ENFORCE_GE(axis, -(rank + 1),
                      platform::errors::InvalidArgument(
                          "The attribute axis is out of range, it must be "
                          "inside [-(rank+1), rank+1), where rank = %d",
                          rank));
    PADDLE_ENFORCE_LT(axis, rank + 1,
                      platform::errors::InvalidArgument(
                          "The attribute axis is out of range, it must be "
                          "inside [-(rank+1), rank+1), where rank = %d",
                          rank));
95 96
    if (axis < 0) axis += (rank + 1);

97
    auto vec = phi::vectorize<int>(input_dims[0]);
98
    vec.insert(vec.begin() + axis, input_dims.size());
99
    ctx->SetOutputDim(framework::GradVarName("X"), phi::make_ddim(vec));
100 101 102 103 104
  }
};

}  // namespace operators
}  // namespace paddle
D
dzhwinter 已提交
105 106 107 108

namespace plat = paddle::platform;
namespace ops = paddle::operators;

C
csy0225 已提交
109 110 111
DECLARE_INFER_SHAPE_FUNCTOR(unstack, UnStackInferMetaFunctor,
                            PD_INFER_META(phi::UnStackInferMeta));

D
dzhwinter 已提交
112
REGISTER_OPERATOR(unstack, ops::UnStackOp, ops::UnStackOpMaker,
H
hong 已提交
113
                  ops::UnStackGradOpMaker<paddle::framework::OpDesc>,
C
csy0225 已提交
114 115
                  ops::UnStackGradOpMaker<paddle::imperative::OpBase>,
                  UnStackInferMetaFunctor);
116 117

REGISTER_OPERATOR(unstack_grad, ops::UnStackGradOp);