TrainerInternal.h 3.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

X
Xin Pan 已提交
17
#include "paddle/legacy/utils/Util.h"
Z
zhangjinchao01 已提交
18 19 20

#include <stdio.h>
#include <stdlib.h>
Y
Yu Yang 已提交
21
#include <fstream>
Z
zhangjinchao01 已提交
22 23

#include "ParameterUpdater.h"
Y
Yu Yang 已提交
24
#include "TrainerConfig.pb.h"
Z
zhangjinchao01 已提交
25 26
#include "TrainerConfigHelper.h"
#include "TrainerInternalConfig.h"
Y
Yu Yang 已提交
27
#include "hl_gpu.h"
X
Xin Pan 已提交
28
#include "paddle/legacy/gserver/gradientmachines/GradientMachine.h"
Z
zhangjinchao01 已提交
29 30 31 32 33 34 35 36

namespace paddle {

/**
 * TrainerInteral
 * the core training class for driving training logic
 */
class TrainerInternal {
W
Wu Yi 已提交
37
 public:
Z
zhangjinchao01 已提交
38 39 40
  struct ParaStat {
    real maxAbsGrad;
    real avgAbsGrad;
41
    ParaStat() : maxAbsGrad(.0), avgAbsGrad(.0) {}
Z
zhangjinchao01 已提交
42 43
  };

44
  TrainerInternal() {}
Z
zhangjinchao01 已提交
45 46 47 48 49 50 51 52 53

  /**
   * Intializes trainer internal class
   * @param config network config
   * @param machine gradient machine
   * @param intconfig training config
   * @param stats training stats
   * @param testing if it is in testing phase
   */
54 55 56 57
  void init(const std::shared_ptr<TrainerConfigHelper>& config,
            const GradientMachinePtr& machine,
            std::unique_ptr<TrainerInternalConfig>&& intconfig,
            const std::shared_ptr<TrainerStats>& stats,
Z
zhangjinchao01 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
            bool testing);

  virtual ~TrainerInternal() {}

  /**
   * CreateParameterUpdater
   * @param testing if it is in testing phase
   */
  void createParameterUpdater(bool testing);

  /**
   * FinishTrainPass
   * @param passId current pass id
   * @param batchId current batch id, starts from 0
   */
  void finishTrainPass(int passId, int batchId);

  /**
   * trainOneBatch
   * @param batchId current batch id
   * @param dataBatch data for the batch
   */
E
emailweixu 已提交
80 81 82
  void trainOneBatch(int64_t batchId,
                     const DataBatch& dataBatch,
                     std::vector<Argument>* outArgs);
Z
zhangjinchao01 已提交
83 84 85 86 87 88 89 90 91 92

  /**
   * showParameterStats
   * @param paraStats training stats
   */
  void showParameterStats(const std::vector<ParaStat>& paraStats);

  /**
   * getGradientMachine
   */
93
  inline const GradientMachinePtr& getGradientMachine() const {
Z
zhangjinchao01 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107
    return gradientMachine_;
  }

  /**
   * getParameterUpdater
   */
  inline const std::shared_ptr<ParameterUpdater>& getParameterUpdater() {
    return parameterUpdater_;
  }

  /**
   * setCurrentEvaluator
   * @param eval evaluator to set
   */
108
  inline void setCurrentEvaluator(Evaluator* eval) { currentEvaluator_ = eval; }
Z
zhangjinchao01 已提交
109 110 111 112 113

  /**
   * setEvaluator
   * @param eval evaluator to set
   */
114
  inline void setEvaluator(Evaluator* eval) { evaluator_ = eval; }
Z
zhangjinchao01 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128

  /**
   * forwardBackwardBatch
   * @param inArgs input argument for data batch
   * @param outArgs output argument from neural network
   * @param updateCallback layerwise parameter gradient statistics
   * @param doPipelineUpdate whether to do pipeline update
   */
  virtual void forwardBackwardBatch(const std::vector<Argument>& inArgs,
                                    std::vector<Argument>& outArgs,
                                    PassType& passType,
                                    UpdateCallback updateCallback,
                                    bool doPipelineUpdate);

W
Wu Yi 已提交
129
 protected:
Z
zhangjinchao01 已提交
130 131 132 133 134 135 136 137 138 139
  std::shared_ptr<ParameterUpdater> parameterUpdater_;
  GradientMachinePtr gradientMachine_;
  std::shared_ptr<TrainerConfigHelper> config_;
  std::unique_ptr<TrainerInternalConfig> intconfig_;
  std::shared_ptr<TrainerStats> stats_;
  Evaluator* currentEvaluator_;
  Evaluator* evaluator_;
};

}  // namespace paddle