data_transfer.cc 24.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/new_executor/data_transfer.h"
16

17
#include "paddle/fluid/framework/convert_utils.h"
18 19 20 21 22 23 24 25 26 27

namespace paddle {
namespace framework {
namespace interpreter {

bool DataTranferHelper::apply(const OpKernelType& kernel_type_for_var,
                              const OpKernelType& expected_kernel_key,
                              const std::string& var_name,
                              std::string* new_var_name,
                              std::vector<OpFuncNode>* op_func_nodes,
28 29
                              bool use_local_scope,
                              bool is_fetch_v2) {
30 31 32 33 34
  bool is_transferred = false;
  auto* src_var_name = &var_name;

  // 1. layout transform
  if (need_layout_transform(kernel_type_for_var, expected_kernel_key)) {
35 36 37 38 39
    auto op = TransferLayout(*src_var_name,
                             new_var_name,
                             kernel_type_for_var.data_layout_,
                             expected_kernel_key.data_layout_,
                             var_scope_,
40
                             scope_,
41
                             is_fetch_v2);
L
Leo Chen 已提交
42
    if (op) {
43 44
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
45
    }
46 47 48 49 50 51
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 2. dype transform
  if (need_dtype_transform(kernel_type_for_var, expected_kernel_key)) {
52 53 54 55 56
    auto op = TransferDtype(*src_var_name,
                            new_var_name,
                            kernel_type_for_var.data_type_,
                            expected_kernel_key.data_type_,
                            var_scope_,
57
                            scope_);
L
Leo Chen 已提交
58
    if (op) {
59 60
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
61
    }
62 63 64 65 66 67 68 69
    // update src_var_name
    src_var_name = new_var_name;
    is_transferred = true;
  }
  // 3. device transform
  if (need_device_transform(kernel_type_for_var, expected_kernel_key)) {
    auto src_place = kernel_type_for_var.place_;
    auto dst_place = expected_kernel_key.place_;
L
Leo Chen 已提交
70

71 72
    auto op = TransferDevice(
        *src_var_name, new_var_name, src_place, dst_place, var_scope_, scope_);
L
Leo Chen 已提交
73
    if (op) {
74 75
      RunAndConstructOpFuncNode(
          op, *src_var_name, *new_var_name, op_func_nodes);
L
Leo Chen 已提交
76
    }
77 78 79 80 81
    is_transferred = true;
  }
  return is_transferred;
}

82
void DataTranferHelper::RunAndConstructShareNode(
83 84
    const std::string& src_var_name,
    const std::string& dst_var_name,
85 86 87 88 89 90 91 92 93 94
    std::vector<OpFuncNode>* op_func_nodes) {
  VariableNameMap in_name_map = {{"X", {src_var_name}}};
  VariableNameMap out_name_map = {{"Out", {dst_var_name}}};
  AttributeMap attr_map;

  std::string op_type("share_data");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

95 96
  VLOG(3) << string::Sprintf(
      "Insert %s with %s -> %s.", op_type, src_var_name, dst_var_name);
97 98 99 100

  RunAndConstructOpFuncNode(op, src_var_name, dst_var_name, op_func_nodes);
}

101
void DataTranferHelper::RunAndConstructOpFuncNode(
102 103
    const std::shared_ptr<OperatorBase>& op,
    const std::string& var_name,
104 105 106 107 108 109
    const std::string& new_var_name,
    std::vector<OpFuncNode>* new_op_func_nodes) {
  auto& op_type = op->Type();

  // 1. Construct RuntimeContext
  RuntimeContext runtime_context({}, {});
110 111
  runtime_context.inputs["X"] = {scope_->FindVar(var_name)};
  runtime_context.outputs["Out"] = {scope_->Var(new_var_name)};
112 113 114 115
  InterpretercoreInferShapeContext infer_shape_ctx(*op, runtime_context);

  // 2. Execute infer shape and choose kernel
  auto& all_op_kernels = OperatorWithKernel::AllOpKernels();
116
  op.get()->Info().infer_shape_(&infer_shape_ctx);
117
  auto kernels_iter = all_op_kernels.find(op_type);
118 119
  PADDLE_ENFORCE_NE(kernels_iter,
                    all_op_kernels.end(),
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
                    platform::errors::Unavailable(
                        "There are no kernels which are registered in "
                        "the %s operator.",
                        op_type));
  OpKernelMap& kernels = kernels_iter->second;
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place_);
  Scope scope;
  auto exec_ctx = ExecutionContext(*op, scope, *dev_ctx, runtime_context);
  auto expected_kernel_key =
      dynamic_cast<const framework::OperatorWithKernel*>(op.get())
          ->GetExpectedKernelType(exec_ctx);
  auto kernel_iter = kernels.find(expected_kernel_key);

  // 3. Execute transfer op and construct OpFuncNode
  OpFuncNode new_op_func_node;
  new_op_func_node.input_index["X"] = {var_scope_->VarId(var_name)};
  new_op_func_node.output_index["Out"] = {var_scope_->VarId(new_var_name)};
  new_op_func_node.kernel_func_ = OpKernelComputeFunc(kernel_iter->second);
  new_op_func_node.kernel_func_(exec_ctx);
  // NOTE(Aurelius84): data_transform_op is expensive operation, so we tag them
  // as kQueueSync and execute them in thread pool.
  new_op_func_node.type_ = OpFuncType::kQueueSync;
  new_op_func_node.dev_ctx_ = dev_ctx;
  new_op_func_node.operator_base_ = op;
  VLOG(3) << "Run " << op_type << " done.";

  new_op_func_nodes->emplace_back(std::move(new_op_func_node));
}

L
Leo Chen 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162
// Var is initialized && var contains tensor && tensor is initialized
bool IsTensorOfVarInitialized(Variable* var) {
  if (var->IsInitialized()) {
    if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
      return GetLoDTensorOrSelectedRowsValueFromVar(*var)->IsInitialized();
    } else if (var->IsType<LoDTensorArray>()) {
      return static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]))
          ->IsInitialized();
    }
  }
  return false;
}

163 164 165 166 167 168 169
std::shared_ptr<OperatorBase> TransferLayout(const std::string& var_name,
                                             std::string* new_var_name,
                                             DataLayout in_layout,
                                             DataLayout out_layout,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope,
                                             bool is_fetch_v2) {
L
Leo Chen 已提交
170 171 172 173 174 175 176 177
#ifdef PADDLE_WITH_MKLDNN
  // NOTE(zhiqiu): hot fix, follow the same logic in DataCopy() in fetch_op.cc
  if (in_layout == framework::DataLayout::kMKLDNN &&
      var_name == framework::GradVarName("Filter") && is_fetch_v2) {
    out_layout = framework::DataLayout::kNCHW;
  }
#endif

178
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
179 180 181 182 183
  *new_var_name = var_name + "_layout_" +
                  std::to_string(static_cast<int>(in_layout)) + "_" +
                  std::to_string(static_cast<int>(out_layout));

  if (var_scope->HasVar(*new_var_name) &&
184
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
185 186 187 188
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
189

L
Leo Chen 已提交
190
  auto* ptr = local_scope->Var(*new_var_name);
191
  auto var_type = local_scope->FindVar(var_name)->Type();
192
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
193 194 195
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
196
  var_scope->AddVar(*new_var_name, nullptr);
197 198 199 200

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
201 202
  AttributeMap attr_map = {{"src_layout", static_cast<int>(in_layout)},
                           {"dst_layout", static_cast<int>(out_layout)}};
203

204
  // 3. Create transfer_layout_op
205 206 207 208 209
  std::string op_type("transfer_layout");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

210
  VLOG(3) << string::Sprintf("Insert %s for variable %s(%s) -> %s(%s).",
211 212 213 214
                             op_type,
                             var_name,
                             in_layout,
                             *new_var_name,
215
                             out_layout);
216 217 218 219 220 221 222
  return op;
}

std::shared_ptr<OperatorBase> TransferDtype(const std::string& var_name,
                                            std::string* new_var_name,
                                            proto::VarType::Type in_dtype,
                                            proto::VarType::Type out_dtype,
223
                                            framework::VariableScope* var_scope,
224 225
                                            framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
226 227 228 229
  *new_var_name = var_name + "_dtype_" +
                  std::to_string(static_cast<int>(in_dtype)) + "_" +
                  std::to_string(static_cast<int>(out_dtype));
  if (var_scope->HasVar(*new_var_name) &&
230
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
231 232 233 234
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
235

L
Leo Chen 已提交
236
  auto* ptr = local_scope->Var(*new_var_name);
237
  auto var_type = local_scope->FindVar(var_name)->Type();
238
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
239

240 241 242
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
243
  var_scope->AddVar(*new_var_name, nullptr);
244 245 246 247 248 249 250 251 252 253

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};
  AttributeMap attr_map;
  attr_map["in_dtype"] = static_cast<int>(in_dtype);
  attr_map["out_dtype"] = static_cast<int>(out_dtype);
  // NOTE(Aurelius84): In whice case use_mkldnn = true?
  attr_map["use_mkldnn"] = false;

254
  // 3. Create transfer_dtype_op
255 256 257 258 259
  std::string op_type("transfer_dtype");
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

260 261 262 263 264 265
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             DataTypeToString(in_dtype),
                             *new_var_name,
                             DataTypeToString(out_dtype));
266 267 268 269 270 271 272 273 274 275
  return op;
}

std::shared_ptr<OperatorBase> TransferDevice(const std::string& var_name,
                                             std::string* new_var_name,
                                             const platform::Place& src_place,
                                             const platform::Place& dst_place,
                                             VariableScope* var_scope,
                                             framework::Scope* local_scope) {
  // 1. Generate new_var_name and Initialize it
L
Leo Chen 已提交
276 277 278
  *new_var_name = var_name + "_device_" + src_place.DebugString() + "_" +
                  dst_place.DebugString();

279 280
  if (local_scope->FindVar(*new_var_name) &&
      IsTensorOfVarInitialized(local_scope->FindVar(*new_var_name))) {
L
Leo Chen 已提交
281 282 283 284
    // already has same var
    VLOG(4) << "Use cached variable: " << *new_var_name;
    return nullptr;
  }
285

L
Leo Chen 已提交
286
  auto* ptr = local_scope->Var(*new_var_name);
287
  auto var_type = local_scope->FindVar(var_name)->Type();
288
  InitializeVariable(ptr, static_cast<proto::VarType::Type>(var_type));
289 290 291
  VLOG(3) << "Create Variable " << *new_var_name
          << " locally, which pointer is " << ptr << "Variable Type "
          << var_type;
292
  var_scope->AddVar(*new_var_name, nullptr);
293 294 295 296 297

  // 2. Construct VariableNameMap
  VariableNameMap in_name_map = {{"X", {var_name}}};
  VariableNameMap out_name_map = {{"Out", {*new_var_name}}};

298
  // 3. Create memcpy_d2h_op or memcpy_h2d_op
299 300
  std::string op_type;
  AttributeMap attr_map;
301 302
  PADDLE_ENFORCE_EQ(platform::is_same_place(src_place, dst_place),
                    false,
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
                    platform::errors::PreconditionNotMet(
                        "Required src_place shall be different with dst_place, "
                        "but received same place: %s",
                        src_place));
  if (IsSupportedHetePlace(dst_place)) {
    op_type = kMemcpyH2D;
    int dst_place_type = platform::is_gpu_place(dst_place)   ? 0
                         : platform::is_npu_place(dst_place) ? 1
                         : platform::is_xpu_place(dst_place) ? 2
                                                             : -1;
    attr_map = {{"dst_place_type", dst_place_type}};
  } else if (IsSupportedHetePlace(src_place)) {
    op_type = kMemcpyD2H;
    int dst_place_type = platform::is_cpu_place(dst_place)           ? 0
                         : platform::is_cuda_pinned_place(dst_place) ? 1
                                                                     : -1;
    attr_map = {{"dst_place_type", dst_place_type}};
  } else {
    PADDLE_THROW(platform::errors::PreconditionNotMet(
        "Not support Memcpy typ : %s -> %s", src_place, dst_place));
  }

325 326 327 328
  auto& op_info = OpInfoMap::Instance().Get(op_type);
  auto op = std::shared_ptr<OperatorBase>(
      op_info.Creator()(op_type, in_name_map, out_name_map, attr_map));

329 330 331 332 333 334
  VLOG(3) << string::Sprintf("Insert %s with %s(%s) -> %s(%s).",
                             op_type,
                             var_name,
                             src_place,
                             *new_var_name,
                             dst_place);
335 336 337 338 339 340
  return op;
}

void ApplyDataTransform(const OpKernelType& expected_kernel_key,
                        const platform::Place& place,
                        VariableValueMap* ins_map_temp,
341
                        VariableValueMap* outs_map_temp,
342 343
                        VariableScope* var_scope,
                        OpFuncNode* op_func_node,
344 345
                        std::vector<OpFuncNode>* new_op_func_nodes,
                        bool use_local_scope) {
346 347 348
  Scope* local_scope = use_local_scope ? var_scope->GetMutableLocalScope()
                                       : var_scope->GetMutableScope();

349
  auto op_base = op_func_node->operator_base_.get();
350 351 352 353
  PADDLE_ENFORCE_NOT_NULL(op_base,
                          platform::errors::PreconditionNotMet(
                              "op_base is null, please pass a valid "
                              "op_base in apply_data_transform."));
354 355

  VariableNameMap new_ins(op_base->Inputs());
356
  VariableNameMap new_outs(op_base->Outputs());
357 358 359
  // record the no need transform variable index.
  std::unordered_set<int> no_data_transform_index;

L
Leo Chen 已提交
360 361 362
  const std::unordered_set<std::string>* no_buffer_ins = nullptr;
  auto& no_buffer_inferer = op_base->Info().NoNeedBufferVarsInferer();
  if (no_buffer_inferer) {
363 364
    no_buffer_ins = &(no_buffer_inferer(
        op_base->Inputs(), op_base->Outputs(), op_base->Attrs()));
L
Leo Chen 已提交
365 366 367 368 369
    if (no_buffer_ins->empty()) {
      no_buffer_ins = nullptr;
    }
  }

370
  bool transfered = false;
371
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
372
  for (auto& var_name_item : *ins_map_temp) {
L
Leo Chen 已提交
373 374 375
    bool should_skip_input =
        no_buffer_ins && no_buffer_ins->count(var_name_item.first) > 0;

376 377
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      auto var = var_name_item.second[i];
378
      auto var_name = new_ins[var_name_item.first].at(i);
379
      const Tensor* tensor_in;
L
Leo Chen 已提交
380 381 382
      std::string new_var_name;
      bool is_transferred = false;

383
      if (var->IsType<LoDTensor>() || var->IsType<phi::SelectedRows>()) {
384 385
        tensor_in = GetLoDTensorOrSelectedRowsValueFromVar(*var);
      } else if (var->IsType<LoDTensorArray>()) {
386 387 388
        if (var->Get<LoDTensorArray>().size() == 0) {
          continue;
        }
389 390 391
        tensor_in =
            static_cast<const Tensor*>(&(var->Get<LoDTensorArray>()[0]));
      } else {
392
        continue;
393
      }
L
Leo Chen 已提交
394
      // special case
395
      if (!tensor_in->IsInitialized()) {
L
Leo Chen 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
        if (should_skip_input == true) {
#ifdef PADDLE_WITH_MKLDNN
          // Var without buffer may be needed
          // for some situation like InferShape().
          // In this situation We cannot skip Var analysis, as
          // MKL-DNN shape of Var may differ from kNHWC Var
          // In such situation corressponding resized Var
          // has to be created and registered
          if ((tensor_in->layout() == DataLayout::kMKLDNN) &&
              (var->IsType<LoDTensor>() == true) &&
              (expected_kernel_key.data_layout_ != DataLayout::kMKLDNN) &&
              (paddle::platform::MKLDNNDeviceContext::tls()
                   .get_cur_paddle_data_layout() == DataLayout::kNHWC)) {
            VLOG(7) << "Created reshaped dummy input based on MKL-DNN Tensor , "
                       "but kNHWC layout"
                    << var_name_item.first << " in Operator "
                    << op_base->Type();
413 414 415 416 417 418 419
            auto op = TransferLayout(var_name,
                                     &new_var_name,
                                     tensor_in->layout(),
                                     DataLayout::kNHWC,
                                     var_scope,
                                     local_scope,
                                     op_base->Type() == "fetch_v2");
L
Leo Chen 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435
            if (op) {
              data_transfer_helper.RunAndConstructOpFuncNode(
                  op, var_name, new_var_name, new_op_func_nodes);
            }
            is_transferred = true;
          } else {
            VLOG(7) << "Skip scanning input " << var_name_item.first
                    << " in Operator " << op_base->Type();
          }
#endif
        } else {
          continue;
        }
      } else {
        auto kernel_type_for_var =
            static_cast<const framework::OperatorWithKernel*>(op_base)
436 437
                ->GetKernelTypeForVar(
                    var_name_item.first, *tensor_in, expected_kernel_key);
L
Leo Chen 已提交
438
        // apply data transform
439 440 441 442 443 444 445 446
        is_transferred =
            data_transfer_helper.apply(kernel_type_for_var,
                                       expected_kernel_key,
                                       var_name,
                                       &new_var_name,
                                       new_op_func_nodes,
                                       use_local_scope,
                                       op_base->Type() == "fetch_v2");
447 448 449
      }

      if (is_transferred) {
450
        transfered = true;
451 452 453
        // update RuntimeContext.inputs and original op_func_node inputs
        op_func_node->input_index[var_name_item.first][i] =
            var_scope->VarId(new_var_name);
454
        var_name_item.second[i] = local_scope->FindVar(new_var_name);
455
        new_ins[var_name_item.first][i] = new_var_name;
456 457 458 459 460 461 462
        for (auto& pair : new_outs) {
          for (size_t j = 0; j < pair.second.size(); ++j) {
            VLOG(4) << pair.second[j] << " " << var_name;
            if (pair.second[j] == var_name) {
              VLOG(4) << "Found inplace between input(" << var_name_item.first
                      << ") and output(" << pair.first
                      << "), the variable name is " << var_name;
463 464
              (*outs_map_temp)[pair.first][j] =
                  local_scope->FindVar(new_var_name);
465 466 467 468 469 470 471 472 473
              new_outs[pair.first][j] = new_var_name;
              op_func_node
                  ->inplace_back_map[var_scope->GetIdByName(new_var_name)] =
                  var_scope->GetIdByName(var_name);
              op_func_node->output_index[pair.first][j] =
                  var_scope->VarId(new_var_name);
            }
          }
        }
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488
        // NOTE(Aurelius84): avoid deepcopy twice if we already insert data
        // transfer op.
        if (op_base->Type() == "fetch_v2") {
          op_base->SetAttr("deepcopy", false);
        }
      } else {
        // record no need data transformer input var_id
        VLOG(3) << op_base->Type()
                << " found no data_transform var: " << var_name
                << " with id: " << var_scope->VarId(var_name);
        no_data_transform_index.emplace(var_scope->VarId(var_name));
      }
    }
  }

489 490
  if (transfered) {
    // NOTE(zhiqiu): UPDATE the corresponding OeratorBase to make it consistent
491 492 493
    // with instruction.
    op_base->Inputs() = new_ins;
    op_base->Outputs() = new_outs;
494
  }
495 496 497
  op_func_node->no_data_transform_index = std::move(no_data_transform_index);
}

498 499 500 501 502 503 504
void HandleComplexGradToRealGrad(const OpFuncNode& op_func_node,
                                 const platform::Place& place,
                                 const VariableNameMap& out_names,
                                 VariableValueMap* out_vars,
                                 VariableScope* var_scope,
                                 std::vector<OpFuncNode>* op_func_nodes,
                                 framework::Scope* local_scope) {
505
  DataTranferHelper data_transfer_helper(place, var_scope, local_scope);
506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537
  for (auto& var_name_item : out_names) {
    std::vector<Variable*>& vars = out_vars->at(var_name_item.first);
    for (size_t i = 0; i < var_name_item.second.size(); ++i) {
      // 1. find grad_var & check whether is complex tensor
      auto var_name = var_name_item.second[i];
      auto orig_var_name = framework::GradOriginalVarName(var_name);
      // only focus on gradient var
      if (var_name == orig_var_name) {
        VLOG(3) << "skip " << var_name << " with same name as "
                << orig_var_name;
        continue;
      }
      auto* grad_var = vars[i];
      // skip nullptr var
      if (grad_var == nullptr) {
        VLOG(3) << "skip grad_var with nullptr";
        continue;
      }
      // don't process LoDTensorArray temporarily,
      // add support if necessary for complex number calculations in the future
      if (!framework::VarIsTensor(*grad_var)) {
        VLOG(3) << "skip grad_var with LoDTensorArray type";
        continue;
      }
      auto* grad_tensor =
          framework::GetMutableLoDTensorOrSelectedRowsValueFromVar(grad_var);
      // skip nullptr tensor
      if (grad_tensor == nullptr || !grad_tensor->IsInitialized()) {
        VLOG(3) << "skip with grad_tensor not IsInitialized";
        continue;
      }
      // only focus on complex dtype now
538
      auto src_type = framework::TransToProtoVarType(grad_tensor->dtype());
539 540 541 542 543 544
      if (!framework::IsComplexType(src_type)) {
        VLOG(3) << "skip grad_tensor with not complexType";
        continue;
      }

      // 2. find forward var & check whether need to cast
545
      auto* var = local_scope->FindVar(orig_var_name);
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
      // if forward var not exists, do nothing
      if (var == nullptr) {
        VLOG(3) << "skip " << orig_var_name << " with not found in var_scope";
        continue;
      }
      if (!framework::VarIsTensor(*var)) {
        VLOG(3) << "skip " << orig_var_name << " with LoDTensorArray.";
        continue;
      }
      const auto* tensor =
          framework::GetLoDTensorOrSelectedRowsValueFromVar(*var);
      PADDLE_ENFORCE_NOT_NULL(
          tensor,
          platform::errors::Unavailable(
              "Forward tensor is nullptr when handle complex data to real."));
      // only need record type, the allocation may have been released
562
      auto dst_type = framework::TransToProtoVarType(tensor->dtype());
563 564 565 566 567 568 569 570 571 572 573 574 575 576
      // only focus on real dtype and need casting
      if (framework::IsComplexType(dst_type)) {
        continue;
      }

      // 3. cast complex grad to real grad inplacely
      VLOG(3) << "Transform " << framework::DataTypeToString(src_type)
              << " var `" << var_name << "` to "
              << framework::DataTypeToString(dst_type)
              << " real var in static graph.";

      // NOTE(Aurelius84): Consider to define a complex2real op to deal this
      // case.
      std::string new_var_name;
577 578 579 580 581 582
      auto op = TransferDtype(
          var_name, &new_var_name, src_type, dst_type, var_scope, local_scope);
      data_transfer_helper.RunAndConstructOpFuncNode(
          op, var_name, new_var_name, op_func_nodes);
      data_transfer_helper.RunAndConstructShareNode(
          new_var_name, var_name, op_func_nodes);
583 584 585 586
    }
  }
}

587 588 589
}  // namespace interpreter
}  // namespace framework
}  // namespace paddle