elementwise_mod_op.h 3.7 KB
Newer Older
P
phlrain 已提交
1
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#include "paddle/fluid/operators/elementwise/elementwise_op.h"

namespace paddle {
namespace operators {

template <typename T>
struct ModFunctor {
S
ShenLiang 已提交
24 25 26 27 28
  inline HOSTDEVICE T operator()(T a, T b) const {
    T res = a % b;
    if ((res != 0) && ((res < 0) != (b < 0))) res += b;
    return res;
  }
29 30
};

S
ShenLiang 已提交
31 32 33 34 35 36 37 38 39
template <typename T>
struct InverseModFunctor {
  inline HOSTDEVICE T operator()(T a, T b) const {
    T res = b % a;
    if ((res != 0) && ((res < 0) != (a < 0))) res += a;
    return res;
  }
};

40 41
template <typename T>
struct ModFunctorFP {
42
  inline HOSTDEVICE T operator()(T a, T b) const {
S
ShenLiang 已提交
43 44 45
    T res = fmod(a, b);
    if ((res != 0) && ((b < 0) != (res < 0))) res += b;
    return res;
46
  }
47 48
};

S
ShenLiang 已提交
49 50 51 52 53 54 55 56 57
template <typename T>
struct InverseModFunctorFP {
  inline HOSTDEVICE T operator()(T a, T b) const {
    T res = fmod(b, a);
    if ((res != 0) && ((a < 0) != (res < 0))) res += a;
    return res;
  }
};

58 59 60 61 62
template <typename DeviceContext, typename T>
void elementwise_mod(const framework::ExecutionContext &ctx,
                     const framework::Tensor *x, const framework::Tensor *y,
                     framework::Tensor *z) {
  int axis = ctx.Attr<int>("axis");
S
ShenLiang 已提交
63 64 65 66 67 68 69 70 71
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
    ElementwiseComputeEx<ModFunctor<T>, DeviceContext, T>(ctx, x, y, axis,
                                                          ModFunctor<T>(), z);
  } else {
    ElementwiseComputeEx<InverseModFunctor<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseModFunctor<T>(), z);
  }
72 73
}

74 75 76 77 78
template <typename DeviceContext, typename T>
void elementwise_mod_fp(const framework::ExecutionContext &ctx,
                        const framework::Tensor *x, const framework::Tensor *y,
                        framework::Tensor *z) {
  int axis = ctx.Attr<int>("axis");
S
ShenLiang 已提交
79 80 81 82 83 84 85 86 87
  auto x_dims = x->dims();
  auto y_dims = y->dims();
  if (x_dims.size() >= y_dims.size()) {
    ElementwiseComputeEx<ModFunctorFP<T>, DeviceContext, T>(
        ctx, x, y, axis, ModFunctorFP<T>(), z);
  } else {
    ElementwiseComputeEx<InverseModFunctorFP<T>, DeviceContext, T>(
        ctx, x, y, axis, InverseModFunctorFP<T>(), z);
  }
88 89
}

90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
template <typename DeviceContext, typename T>
class ElementwiseModKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    auto *y = ctx.Input<framework::LoDTensor>("Y");
    auto *z = ctx.Output<framework::LoDTensor>("Out");

    z->mutable_data<T>(ctx.GetPlace());

    // dtype of x and y is int64 or int32
    elementwise_mod<DeviceContext, T>(ctx, x, y, z);
  }
};

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
template <typename DeviceContext, typename T>
class ElementwiseModFPKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *x = ctx.Input<framework::LoDTensor>("X");
    auto *y = ctx.Input<framework::LoDTensor>("Y");
    auto *z = ctx.Output<framework::LoDTensor>("Out");

    z->mutable_data<T>(ctx.GetPlace());

    // dtype of x and y is float or double
    elementwise_mod_fp<DeviceContext, T>(ctx, x, y, z);
  }
};

120 121
}  // namespace operators
}  // namespace paddle