sampling_id_op.cu 3.0 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

     http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License. */
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"

template <typename T>
struct UniformGenerator {
  T min_, max_;
  unsigned int seed_;

  __host__ __device__ UniformGenerator(T min, T max, int seed)
      : min_(min), max_(max), seed_(seed) {}

  __host__ __device__ T operator()(const unsigned int n) const {
    thrust::minstd_rand rng;
    rng.seed(seed_);
    thrust::uniform_real_distribution<T> dist(min_, max_);
    rng.discard(n);
    return dist(rng);
  }
};

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename T>
T
bug fix  
tangwei12 已提交
42
class SamplingIdGPUKernel : public framework::OpKernel<T> {
T
tangwei12 已提交
43 44 45 46 47 48
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    const Tensor* input = context.Input<Tensor>("X");
    const int batch_size = static_cast<int>(input->dims()[0]);
    const int width = static_cast<int>(input->dims()[1]);

T
tangwei12 已提交
49 50 51 52
    PADDLE_ENFORCE_GE(batch_size, 0,
                      "batch_size(dims[0]) must be nonnegative.");
    PADDLE_ENFORCE_GE(width, 0, "width(dims[1]) must be nonnegative.");

T
tangwei12 已提交
53 54 55 56 57 58 59 60 61 62
    std::vector<T> ins_vector;
    framework::TensorToVector(*input, context.device_context(), &ins_vector);

    unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
    if (seed == 0) {
      std::random_device rd;
      seed = rd();
    }
    T min = static_cast<T>(context.Attr<float>("min"));
    T max = static_cast<T>(context.Attr<float>("max"));
T
tangwei12 已提交
63
    UniformGenerator<T> gen = UniformGenerator<T>(min, max, seed);
T
tangwei12 已提交
64 65 66

    std::vector<T> ids(batch_size);
    for (size_t i = 0; i < batch_size; ++i) {
T
tangwei12 已提交
67
      T r = gen(0);
T
tangwei12 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
      int idx = width - 1;
      for (int j = 0; j < width; ++j) {
        if ((r -= ins_vector[i * width + j]) < 0) {
          idx = j;
          break;
        }
      }
      ids[i] = ins_vector[i * width + idx];
    }

    std::vector<int64_t> out_dim;
    out_dim.push_back(static_cast<int64_t>(batch_size));

    Tensor* output = context.Output<Tensor>("Out");
    output->Resize(framework::make_ddim(out_dim));
    output->mutable_data<T>(context.GetPlace());
    framework::TensorFromVector(ids, context.device_context(), output);
  }
};

}  // namespace operators
}  // namespace paddle

T
bug fix  
tangwei12 已提交
91 92 93
REGISTER_OP_CUDA_KERNEL(sampling_id,
                        paddle::operators::SamplingIdGPUKernel<float>,
                        paddle::operators::SamplingIdGPUKernel<double>);