parallel.py 23.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except jin compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
16
import time
17
import warnings
18
from multiprocessing import Manager  # noqa: F401
19 20
from multiprocessing import Process  # noqa: F401

21
import paddle
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
from paddle.distributed.collective import (
    Group,
    _default_group_name,
    _get_group_map_by_name,
    _new_process_group_impl,
    _set_default_backend,
    _set_default_store,
    _set_group_map,
    _set_group_map_backend,
    _set_group_map_by_name,
    _valid_backend_list,
)
from paddle.distributed.communication.group import _add_new_group
from paddle.distributed.fleet.base.private_helper_function import (  # noqa: F401
    wait_server_ready,
)
from paddle.distributed.fleet.launch_utils import check_backend
39 40

# deprecated module import
41
# (TODO: GhostScreaming) It will be removed later.
42
from paddle.fluid import core
43 44 45 46 47 48 49

# (TODO: GhostScreaming) It will be removed later.
from paddle.framework import (
    _set_expected_place,
    in_dygraph_mode,
    parallel_helper,
)
50

51
__all__ = []
52 53 54

ParallelStrategy = core.ParallelStrategy

55
# NOTE(chenweihang): Maintain a global parallel env to avoid
56 57 58 59
# initializing ParallelEnv every time and improve performance
_global_parallel_env = None


60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
class ParallelEnv:
    """
    .. note::
        This API is not recommended, if you need to get rank and world_size,
        it is recommended to use ``paddle.distributed.get_rank()`` and
        ``paddle.distributed.get_world_size()`` .

    This class is used to obtain the environment variables required for
    the parallel execution of ``paddle.nn.Layer`` in dynamic mode.

    The parallel execution in dynamic mode needs to be started using ``paddle.distributed.launch``
    or ``paddle.distributed.spawn`` .

    Examples:
      .. code-block:: python

        import paddle
        import paddle.distributed as dist

        def train():
            # 1. initialize parallel environment
            dist.init_parallel_env()

            # 2. get current ParallelEnv
            parallel_env = dist.ParallelEnv()
            print("rank: ", parallel_env.rank)
            print("world_size: ", parallel_env.world_size)

            # print result in process 1:
            # rank: 1
            # world_size: 2
            # print result in process 2:
            # rank: 2
            # world_size: 2

        if __name__ == '__main__':
            # 1. start by ``paddle.distributed.spawn`` (default)
            dist.spawn(train, nprocs=2)
            # 2. start by ``paddle.distributed.launch``
            # train()
    """

    def __init__(self):
        self._rank = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        self._world_size = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
        self._device_type = str(os.getenv("PADDLE_XCCL_BACKEND", ""))

        # imperative only support one gpu or xpu
        if self._device_type != "":
            FLAGS_selected_custom_devices = 'FLAGS_selected_{}s'.format(
                self._device_type
            )
            selected_custom_devices = os.getenv(
                FLAGS_selected_custom_devices, "0"
            ).split(",")
            self._device_id = int(selected_custom_devices[0])
        else:
            if core.is_compiled_with_cuda():
                selected_gpus = os.getenv("FLAGS_selected_gpus", "0").split(",")
                self._device_id = int(selected_gpus[0])
            elif core.is_compiled_with_xpu():
                selected_xpus = os.getenv("FLAGS_selected_xpus", "0").split(",")
                self._device_id = int(selected_xpus[0])
            elif core.is_compiled_with_npu():
                selected_npus = os.getenv("FLAGS_selected_npus", "0").split(",")
                self._device_id = int(selected_npus[0])
            elif core.is_compiled_with_mlu():
                selected_mlus = os.getenv("FLAGS_selected_mlus", "0").split(",")
                self._device_id = int(selected_mlus[0])

        self._trainer_endpoints = os.getenv(
            "PADDLE_TRAINER_ENDPOINTS", ""
        ).split(",")
        self._current_endpoint = os.getenv("PADDLE_CURRENT_ENDPOINT", "")
        self._nrings = int(os.getenv("FLAGS_nccl_nrings", "1"))
        assert (
            self._nrings > 0
        ), "nccl_nrings must be an integer greater than 0."
        assert (
            self._nrings < 9
        ), "nccl_nrings should be less than 9, which is enough in most scenarios."

    @property
    def rank(self):
        """
        Rank of current trainer.

        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ID`` . The default value is 0.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINER_ID=0
            import paddle.distributed as dist

            env = dist.ParallelEnv()
            print("The rank is %d" % env.rank)
            # The rank is 0
        """
        return self._rank

    @property
    def world_size(self):
        """
        The number of trainers (number of processes participating in current job).

        Its value is equal to the value of the environment variable ``PADDLE_TRAINERS_NUM`` . The default value is 1.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINERS_NUM=4
            import paddle.distributed as dist

            env = dist.ParallelEnv()
            print("The world_size is %d" % env.world_size)
            # The world_size is 4
        """
        return self._world_size

    @property
    def device_id(self):
        """
        The ID of selected GPU card for parallel training.

        Its value is equal to the value of the environment variable ``FLAGS_selected_gpus`` . The default value is 0.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_selected_gpus=1
            import paddle.distributed as dist

            env = dist.ParallelEnv()
            print("The device id are %d" % env.device_id)
            # The device id are 1
        """
        return self._device_id

    @property
    def device_type(self):
        """
        The type of custom device for parallel training.

        Its value is equal to the value of the environment variable ``PADDLE_XCCL_BACKEND`` . The default value is None.

        """
        return self._device_type

    @property
    def current_endpoint(self):
        """
        The endpoint of current trainer, it is in the form of (node IP + port).

        Its value is equal to the value of the environment variable ``PADDLE_CURRENT_ENDPOINT`` . The default value is "".

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_CURRENT_ENDPOINT=127.0.0.1:6170
            import paddle.distributed as dist

            env = dist.ParallelEnv()
            print("The current endpoint are %s" % env.current_endpoint)
            # The current endpoint are 127.0.0.1:6170
        """
        return self._current_endpoint

    @property
    def trainer_endpoints(self):
        """
        The endpoints of all trainer nodes in the task,
        which are used to broadcast the NCCL ID when NCCL2 is initialized.

        Its value is equal to the value of the environment variable ``PADDLE_TRAINER_ENDPOINTS`` . The default value is "".

        Examples:
          .. code-block:: python

            # execute this command in terminal: export PADDLE_TRAINER_ENDPOINTS=127.0.0.1:6170,127.0.0.1:6171
            import paddle.distributed as dist

            env = dist.ParallelEnv()
            print("The trainer endpoints are %s" % env.trainer_endpoints)
            # The trainer endpoints are ['127.0.0.1:6170', '127.0.0.1:6171']
        """
        return self._trainer_endpoints

    @property
    def nrings(self):
        """
        Nrings of current trainer.

        Its value is equal to the value of the environment variable ``FLAGS_nccl_nrings`` . The default value is 1.

        Examples:
          .. code-block:: python

            # execute this command in terminal: export FLAGS_nccl_nrings=1
            import paddle.distributed as dist

            env = dist.ParallelEnv()
            print("The nrings is %d" % env.nrings)
            # the number of ring is 1
        """
        return self._nrings

    # [aliases] Compatible with old method names
    local_rank = rank
    nranks = world_size
    dev_id = device_id


273 274 275 276 277 278
def _get_global_parallel_env():
    global _global_parallel_env
    if _global_parallel_env is None:
        _global_parallel_env = ParallelEnv()
    return _global_parallel_env

279

280
def _start_kv_server(port, http_server_d, size):
281
    from paddle.distributed.fleet.utils.http_server import KVServer
282

283
    http_server = KVServer(int(port), size=size)
284
    http_server.start()
285
    wait_seconds = 3
L
lilong12 已提交
286
    while http_server_d.get("running", False) or not http_server.should_stop():
287 288 289 290
        time.sleep(wait_seconds)
    http_server.stop()


X
xiongkun 已提交
291 292
def _is_cpuonly(backend):
    check_backend(backend)
293 294 295 296 297 298 299 300 301
    if (
        backend in ['auto', 'nccl', 'bkcl', 'hccl', 'heter', 'cncl']
        and (
            core.is_compiled_with_cuda()
            or core.is_compiled_with_xpu()
            or core.is_compiled_with_npu()
            or core.is_compiled_with_mlu()
        )
    ) or backend == 'xccl':
302

303 304 305 306 307 308
        # passes 'auto' and can use cuda or xpu, use the default logics. so return False
        return False
    else:
        return True


K
kuizhiqing 已提交
309 310 311
def _check_var_exists(var_name):
    var = os.environ.get(var_name, None)
    if var is None:
312 313 314 315
        raise ValueError(
            "paddle.distributed initialize error, "
            "environment variable %s is needed, but not set." % var_name
        )
K
kuizhiqing 已提交
316 317


X
xiongkun 已提交
318
def init_parallel_env():
319
    """
320

321
    Initialize parallel training environment in dynamic graph mode.
322

323
    Note:
324
        Now initialize both `NCCL` and `GLOO` contexts for communication.
325

326 327 328 329 330
    Args:
        backend (string): A string represents the backend used by DataParallel,
            should be one of 'gloo'(for cpu), 'nccl'(for cuda), 'bkcl'(for xpu), 'auto'(auto detect).
            The auto detection prefer 'nccl', 'bkcl' than 'gloo'.

331 332
    Returns:
        None
333

334 335
    Examples:
        .. code-block:: python
336

337
            # required: gpu
338 339 340 341 342 343 344
            import paddle
            import paddle.nn as nn
            import paddle.optimizer as opt
            import paddle.distributed as dist

            class LinearNet(nn.Layer):
                def __init__(self):
345
                    super().__init__()
346 347
                    self._linear1 = nn.Linear(10, 10)
                    self._linear2 = nn.Linear(10, 1)
348

349 350 351 352
                def forward(self, x):
                    return self._linear2(self._linear1(x))

            def train():
353
                # 1. initialize parallel environment
354 355
                dist.init_parallel_env()

356
                # 2. create data parallel layer & optimizer
357 358 359 360 361 362 363
                layer = LinearNet()
                dp_layer = paddle.DataParallel(layer)

                loss_fn = nn.MSELoss()
                adam = opt.Adam(
                    learning_rate=0.001, parameters=dp_layer.parameters())

364
                # 3. run layer
365 366 367 368
                inputs = paddle.randn([10, 10], 'float32')
                outputs = dp_layer(inputs)
                labels = paddle.randn([10, 1], 'float32')
                loss = loss_fn(outputs, labels)
369

370 371 372 373 374 375 376
                loss.backward()

                adam.step()
                adam.clear_grad()

            if __name__ == '__main__':
                dist.spawn(train)
377

378 379
    """

380 381 382 383 384 385 386 387 388 389 390
    # 0. get env & check world size
    global _global_parallel_env
    # when call init_parallel_env, need update `_global_parallel_env`
    _global_parallel_env = ParallelEnv()
    parallel_env = _global_parallel_env
    # if not parallel, `init_parallel_env` do nothing
    if parallel_env.world_size < 2:
        warnings.warn(
            "Currently not a parallel execution environment, `paddle.distributed.init_parallel_env` will not do anything."
        )
        return
391
    # NOTE(xiongkun): support cpu gloo only, add this environment variable to
392
    #                 enable cpu only gloo prarllel training)
X
xiongkun 已提交
393 394
    backend = os.environ.get('PADDLE_DISTRI_BACKEND', 'auto')
    is_cpu_only = _is_cpuonly(backend)
395
    # 1. gpu xpu check, must be gpu or xpu,
396 397 398 399 400 401
    if not (
        is_cpu_only
        or core.is_compiled_with_cuda()
        or core.is_compiled_with_xpu()
        or core.is_compiled_with_npu()
        or core.is_compiled_with_mlu()
S
shentanyue 已提交
402
        or backend == "xccl"
403
    ):
404
        raise NotImplementedError(
405 406
            "If you want to use CPU-only version, please use 'gloo' as backend"
        )
407

408 409
    if backend == "xccl":
        FLAGS_selected_custom_devices = 'FLAGS_selected_{}s'.format(
410 411
            parallel_env.device_type
        )
412 413 414 415 416 417 418 419 420 421 422 423 424 425
        _check_var_exists(FLAGS_selected_custom_devices)
    else:
        if not is_cpu_only and core.is_compiled_with_cuda():
            _check_var_exists("FLAGS_selected_gpus")
            backend = "nccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_xpu():
            _check_var_exists('FLAGS_selected_xpus')
            backend = "bkcl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_npu():
            _check_var_exists('FLAGS_selected_npus')
            backend = "hccl" if backend == "auto" else backend
        elif not is_cpu_only and core.is_compiled_with_mlu():
            _check_var_exists('FLAGS_selected_mlus')
            backend = "cncl" if backend == "auto" else backend
426

427 428 429 430 431
    _check_var_exists("PADDLE_TRAINER_ID")
    _check_var_exists("PADDLE_CURRENT_ENDPOINT")
    _check_var_exists("PADDLE_TRAINERS_NUM")
    _check_var_exists("PADDLE_TRAINER_ENDPOINTS")

432 433 434 435 436 437
    # NOTE(chenweihang): [ why config global place here? ]
    # the dygraph mode will be set to default mode,
    # users will not call `dygraph.guard` or `enable_dygraph`
    # directly, if they want to switch default place,
    # they need to call a function to change default place,
    # here just set correctly place to users
438
    if backend == "xccl":
439 440 441
        place = core.CustomPlace(
            parallel_env.device_type, parallel_env.device_id
        )
442
    elif is_cpu_only:
443 444 445 446 447 448 449 450 451 452 453 454 455
        place = core.CPUPlace()
    elif core.is_compiled_with_cuda():
        place = core.CUDAPlace(parallel_env.device_id)
    elif core.is_compiled_with_xpu():
        place = core.XPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_npu():
        place = core.NPUPlace(parallel_env.device_id)
    elif core.is_compiled_with_mlu():
        place = core.MLUPlace(parallel_env.device_id)

    _set_expected_place(place)

    group = None
456

L
lilong12 已提交
457 458 459 460
    if backend in _valid_backend_list and in_dygraph_mode():
        if _default_group_name in _get_group_map_by_name():
            return _get_group_map_by_name()[_default_group_name]
        _set_default_backend(backend)
461 462 463 464 465
        rank = int(os.getenv("PADDLE_TRAINER_ID"))
        world_size = int(os.getenv("PADDLE_TRAINERS_NUM"))
        assert rank >= 0 and world_size > rank and world_size > 1, (
            "rank must be non-negative and world_size must be the "
            "maximum rank plus one. Moreover, at least two processes are "
466 467
            "required to create a process group."
        )
468 469
        master_addr = os.getenv("MASTER_ADDR", None)
        master_port = os.getenv("MASTER_PORT", None)
470 471 472 473 474
        endpoints = (
            ":".join([master_addr, master_port])
            if master_addr and master_port
            else None
        )
475
        if endpoints is None:
476 477 478 479 480 481 482
            endpoints = os.getenv("PADDLE_MASTER", None)
        if endpoints is None:
            endpoints = os.getenv("PADDLE_TRAINER_ENDPOINTS").split(',')[0]
        assert endpoints, (
            "The environment variable 'MASTER_ADDR' and 'MASTER_PORT' "
            "must be specified, for example 'export MASTER_ADDR=127.0.0.1' "
            "and 'export MASTER_ADDR=54612'. Or you can start your training"
483 484
            "with paddle.distributed.run module."
        )
485 486 487
        master_addr, master_port = endpoints.split(":")
        master_port = int(master_port)
        is_master = rank == 0
488
        stop_check_timeout = int(os.getenv("FLAGS_stop_check_timeout", "900"))
489 490 491 492 493 494 495
        default_store = core.TCPStore(
            master_addr,
            master_port,
            is_master,
            world_size,
            timeout=stop_check_timeout,
        )
L
lilong12 已提交
496
        _set_default_store(default_store)
497 498 499 500 501 502 503 504
        pg = _new_process_group_impl(
            backend,
            default_store,
            rank,
            world_size,
            _default_group_name,
            pg_options=None,
        )
505
        ranks = list(range(world_size))
506
        group = Group(rank, 0, ranks, pg=pg, name=_default_group_name)
L
lilong12 已提交
507 508
        _set_group_map_by_name(_default_group_name, group)
        _set_group_map(0, group)
509
        _set_group_map_backend(group, backend)
510
        _add_new_group(group)
511
        parallel_helper._set_parallel_ctx(True)
512 513

        paddle.distributed.barrier(group=group)
514 515
        return group

K
kuizhiqing 已提交
516
    node_num = set([i.split(":")[0] for i in parallel_env.trainer_endpoints])
517
    # 3: init gloo context (step 1: httpsever start)
L
lilong12 已提交
518
    init_gloo = int(os.getenv("PADDLE_WITH_GLOO", "0"))
K
kuizhiqing 已提交
519
    if is_cpu_only or init_gloo or backend == "heter":
L
lilong12 已提交
520 521 522 523 524 525 526 527
        ep_rank_0 = parallel_env.trainer_endpoints[0].split(":")
        manager = Manager()
        # glboal dict to store status
        http_server_d = manager.dict()
        http_server_d["running"] = False
        if parallel_env.rank == 0:
            # The scope for worker used by http server is '_worker'
            size = {'_worker': parallel_env.world_size}
K
kuizhiqing 已提交
528 529
            if backend == "heter":
                size = {'_worker': len(node_num)}
530 531 532 533
            http_server = Process(
                target=_start_kv_server,
                args=(int(ep_rank_0[1]), http_server_d, size),
            )
L
lilong12 已提交
534 535 536
            http_server.daemon = True
            http_server_d["running"] = True
            http_server.start()
537 538

    # 4. init NCCL ParallelStrategy
539
    strategy = ParallelStrategy()
540 541
    if parallel_helper._is_parallel_ctx_initialized():
        warnings.warn("The parallel environment has been initialized.")
542 543 544 545
    strategy.nranks = parallel_env.world_size
    strategy.local_rank = parallel_env.rank
    strategy.trainer_endpoints = parallel_env.trainer_endpoints
    strategy.current_endpoint = parallel_env.current_endpoint
546
    strategy.nrings = parallel_env.nrings
547

K
kuizhiqing 已提交
548
    # init nccl or hccl or bkcl or heter context
549 550
    if is_cpu_only:
        parallel_helper._set_parallel_ctx(
551 552 553
            core.GLOOParallelContext(strategy, place)
        )
    elif backend == "heter":
K
kuizhiqing 已提交
554
        parallel_helper._set_parallel_ctx(
555 556
            core.HeterParallelContext(strategy, parallel_env.device_id)
        )
557
    elif core.is_compiled_with_cuda():
558
        parallel_helper._set_parallel_ctx(
559 560
            core.NCCLParallelContext(strategy, place)
        )
561 562
    elif core.is_compiled_with_xpu():
        parallel_helper._set_parallel_ctx(
563 564
            core.BKCLParallelContext(strategy, place)
        )
565 566
    elif core.is_compiled_with_npu():
        parallel_helper._set_parallel_ctx(
567 568
            core.HCCLParallelContext(strategy, place)
        )
569 570
    elif core.is_compiled_with_mlu():
        parallel_helper._set_parallel_ctx(
571 572
            core.CNCLParallelContext(strategy, place)
        )
573

K
kuizhiqing 已提交
574 575 576 577 578
    if backend != "heter":
        other_endpoints = strategy.trainer_endpoints[:]
        other_endpoints.remove(strategy.current_endpoint)
        if not is_cpu_only and strategy.local_rank == 0:
            wait_server_ready(other_endpoints)
579

580
    parallel_helper._init_parallel_ctx()
K
kuizhiqing 已提交
581

582 583 584 585
    # 5: init gloo context (step 2: gloo init)
    # dividing init_gloo into two part beacause nccl and gloo
    # are separately looking for free ports which sometimes
    # leads to port-conflict.
K
kuizhiqing 已提交
586
    if (is_cpu_only or backend == "heter") and parallel_env.rank == 0:
587
        # compare to init_gloo, we don't need to
588 589 590
        # init gloo, because we do this in _init_parallel_ctx;
        http_server_d["running"] = False
        http_server.join()
L
lilong12 已提交
591

592 593
    elif init_gloo:
        wait_server_ready([parallel_env.trainer_endpoints[0]])
L
lilong12 已提交
594 595 596 597 598 599 600 601 602 603 604 605 606 607
        gloo_strategy = core.GlooParallelStrategy()
        gloo_strategy.rank = parallel_env.rank
        gloo_strategy.rank_num = parallel_env.world_size
        gloo_strategy.ip_address = ep_rank_0[0]
        gloo_strategy.ip_port = int(ep_rank_0[1])
        default_init_timeout_seconds = 3600
        default_run_timeout_seconds = 9999999
        gloo_strategy.init_seconds = default_init_timeout_seconds
        gloo_strategy.run_seconds = default_run_timeout_seconds
        gloo = core.GlooParallelContext(gloo_strategy)
        gloo.init()
        if parallel_env.rank == 0:
            http_server_d["running"] = False
            http_server.join()
608
    return group
609

610

L
LiYuRio 已提交
611
def get_rank(group=None):
612
    """
L
LiYuRio 已提交
613 614
    Returns the rank of current trainer in the given group, ranks are consecutive integers in [0, ``world_size``).
    If none of the group is given, the global group will be used as default.
615

L
LiYuRio 已提交
616 617
    Args:
        group (Group, optional): The communication group you want to get rank of current trainer, use global group as default if group is None.
618 619

    Returns:
L
LiYuRio 已提交
620 621 622 623
        (int) The rank of current trainer in the given group. Return -1 if the process is not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
624 625 626 627

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
628
            # Execute this script using distributed launch with one card configs.
629 630 631
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
632
            dist.init_parallel_env()
633 634 635
            print("The rank is %d" % dist.get_rank())
            # The rank is 0
    """
L
LiYuRio 已提交
636 637 638 639
    if in_dygraph_mode() and group:
        return group.rank

    assert group is None, "Only support group argument in eager mode."
640
    return _get_global_parallel_env().rank
641 642


L
LiYuRio 已提交
643
def get_world_size(group=None):
644
    """
L
LiYuRio 已提交
645 646
    Returns the number of trainers (number of processes participating in current job) in the given group.
    If none of the group is given, the global group will be used as default.
647

L
LiYuRio 已提交
648 649
    Args:
        group (Group, optional): The communication group you want to check world size, use global group as default if group is None.
650 651

    Returns:
L
LiYuRio 已提交
652 653 654 655
        (int) The number of trainers in the given group. Return -1 if the process if not part of the given group.

    Warning:
        Argument ``group`` only supports in dygraph mode.
656 657 658 659

    Examples:
        .. code-block:: python

L
LiYuRio 已提交
660
            # Execute this script using distributed launch with one card configs.
661 662 663
            import paddle
            import paddle.distributed as dist

L
LiYuRio 已提交
664
            dist.init_parallel_env()
665
            print("The world_size is %d" % dist.get_world_size())
L
LiYuRio 已提交
666
            # The world_size is 1
667
    """
L
LiYuRio 已提交
668 669 670 671
    if in_dygraph_mode() and group:
        return group.world_size

    assert group is None, "Only support group argument in eager mode."
672
    return _get_global_parallel_env().world_size