conv_bn_fuse_pass.cc 25.1 KB
Newer Older
S
Sylwester Fraczek 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/ir/conv_bn_fuse_pass.h"
W
wanghuancoder 已提交
16

S
Sylwester Fraczek 已提交
17
#include <string>
W
wanghuancoder 已提交
18

P
Pei Yang 已提交
19
#include "paddle/fluid/framework/op_version_registry.h"
S
Sylwester Fraczek 已提交
20 21
#include "paddle/fluid/platform/enforce.h"

22 23 24 25
namespace pten {
class DenseTensor;
}  // namespace pten

W
wanghuancoder 已提交
26 27 28 29 30 31
namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle

S
Sylwester Fraczek 已提交
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
namespace paddle {
namespace framework {
namespace ir {

#define GET_CONV_BN_NODES(pattern_name)                                      \
  /* OPERATORS */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(conv, conv, pattern_name);                       \
  GET_IR_NODE_FROM_SUBGRAPH(batch_norm, batch_norm, pattern_name);           \
  /* CONV inputs */                                                          \
  GET_IR_NODE_FROM_SUBGRAPH(conv_weight, conv_weight, pattern_name);         \
  /* CONV outputs */                                                         \
  GET_IR_NODE_FROM_SUBGRAPH(conv_out, conv_out, pattern_name);               \
  /* BN inputs */                                                            \
  GET_IR_NODE_FROM_SUBGRAPH(bn_scale, bn_scale, pattern_name);               \
  GET_IR_NODE_FROM_SUBGRAPH(bn_bias, bn_bias, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean, bn_mean, pattern_name);                 \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance, bn_variance, pattern_name);         \
  /* BN outputs */                                                           \
  GET_IR_NODE_FROM_SUBGRAPH(bn_out, bn_out, pattern_name); /* Out */         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_mean_out, bn_mean_out, pattern_name);         \
  GET_IR_NODE_FROM_SUBGRAPH(bn_variance_out, bn_variance_out, pattern_name); \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_mean, bn_saved_mean, pattern_name);     \
  GET_IR_NODE_FROM_SUBGRAPH(bn_saved_variance, bn_saved_variance, pattern_name)

void recompute_bias_and_weights(const Scope* scope,
                                ir::Node* conv_weight,            //
                                const ir::Node& bn_scale,         //
                                const LoDTensor& bn_bias_tensor,  //
                                const ir::Node& bn_mean,          //
                                const ir::Node& bn_variance,      //
62
                                LoDTensor* eltwise_y_in_tensor,   //
63
                                float epsilon, const std::string& conv_type) {
64 65 66 67 68 69 70
  using EigenVectorArrayMap =
      Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
  using ConstEigenVectorArrayMap =
      Eigen::Map<const Eigen::Array<float, Eigen::Dynamic, 1>>;
  using EigenMatrixArrayMap = Eigen::Map<
      Eigen::Array<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>;

S
Sylwester Fraczek 已提交
71
  // Re-compute bias of conv2d from BN
72 73 74 75 76 77
  PADDLE_ENFORCE_EQ(
      eltwise_y_in_tensor->dims(), bn_bias_tensor.dims(),
      platform::errors::InvalidArgument("Tensor elementwise y(%d) and batch "
                                        "norm bias(%d) must have same dims.",
                                        eltwise_y_in_tensor->dims().size(),
                                        bn_bias_tensor.dims().size()));
S
Sylwester Fraczek 已提交
78 79 80 81 82 83

  auto* scale_tensor = scope->FindVar(bn_scale.Name())->GetMutable<LoDTensor>();
  auto* variance_tensor =
      scope->FindVar(bn_variance.Name())->GetMutable<LoDTensor>();
  auto* mean_tensor = scope->FindVar(bn_mean.Name())->GetMutable<LoDTensor>();

84 85 86 87 88 89 90 91 92
  ConstEigenVectorArrayMap scale_array(scale_tensor->data<float>(),
                                       scale_tensor->numel(), 1);
  EigenVectorArrayMap variance_array(
      variance_tensor->mutable_data<float>(platform::CPUPlace()),
      variance_tensor->numel(), 1);
  ConstEigenVectorArrayMap mean_array(mean_tensor->data<float>(),
                                      mean_tensor->numel(), 1);
  ConstEigenVectorArrayMap bn_bias_array(bn_bias_tensor.data<float>(),
                                         bn_bias_tensor.numel(), 1);
S
Sylwester Fraczek 已提交
93

94 95 96 97
  // variance will not be used anymore, so make it std_array and then tmp_array
  variance_array += epsilon;
  variance_array = variance_array.sqrt();
  variance_array = scale_array / variance_array;
98
  for (int i = 0; i < variance_tensor->numel(); i++) {
99 100 101 102 103 104
    PADDLE_ENFORCE_EQ(std::isfinite(variance_array[i]), true,
                      platform::errors::InvalidArgument(
                          "The inverse of Fused batch norm variance "
                          "should be finite. Found nonfinite values! "
                          "Please check %s ",
                          bn_variance.Name()));
105
  }
106 107 108
  EigenVectorArrayMap eltwise_y_in_array(
      eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
      eltwise_y_in_tensor->numel(), 1);
109

110 111
  eltwise_y_in_array =
      ((eltwise_y_in_array - mean_array) * variance_array) + bn_bias_array;
112
  for (int i = 0; i < eltwise_y_in_tensor->numel(); i++) {
113 114 115 116 117 118
    PADDLE_ENFORCE_EQ(std::isfinite(eltwise_y_in_array[i]), true,
                      platform::errors::InvalidArgument(
                          "Fused batch norm bias should be "
                          "finite. Found nonfinite values! "
                          "Please check %s and related variables.",
                          bn_variance.Name()));
119
  }
S
Sylwester Fraczek 已提交
120 121

  // Re-compute weight of conv2d from BN
122 123
  auto* weights = scope->FindVar(conv_weight->Name())->GetMutable<LoDTensor>();
  auto weights_shape = weights->dims();
124 125 126 127 128 129 130 131 132 133 134 135 136 137
  auto weights_data = weights->mutable_data<float>(platform::CPUPlace());

  // ConvTranspose weights are in IOHW format
  if (conv_type == "conv2d_transpose") {
    int kernel_size = weights_shape[2] * weights_shape[3];
    for (int i = 0; i < weights->numel();) {
      for (int j = 0; j < weights_shape[1]; ++j) {
        for (int k = 0; k < kernel_size; ++k, ++i) {
          weights_data[i] *= variance_array[j];
        }
      }
    }
  } else {
    auto weights_shape_2d = flatten_to_2d(weights_shape, 1);
138

139 140
    EigenMatrixArrayMap weights_array_2d(weights_data, weights_shape_2d[0],
                                         weights_shape_2d[1]);
141

142 143
    weights_array_2d.colwise() *= variance_array;
  }
S
Sylwester Fraczek 已提交
144 145
}

W
Wangzheee 已提交
146 147 148 149 150 151 152 153 154
ConvBNFusePass::ConvBNFusePass() {
  AddOpCompat(OpCompat("conv2d"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
155
      .IsTensor()
W
Wangzheee 已提交
156 157 158
      .IsOptional()
      .End()
      .AddInput("ResidualData")
159
      .IsTensor()
W
Wangzheee 已提交
160 161 162 163 164 165
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
166
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
167 168
      .End()
      .AddAttr("paddings")
169
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
170 171 172 173 174 175 176 177 178
      .End()
      .AddAttr("padding_algorithm")
      .IsOptional()
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
179
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();

  AddOpCompat(OpCompat("batch_norm"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Scale")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddInput("Mean")
      .IsTensor()
      .End()
      .AddInput("Variance")
      .IsTensor()
      .End()
      .AddOutput("MeanOut")
      .IsTensor()
      .End()
      .AddOutput("VarianceOut")
      .IsTensor()
      .End()
      .AddOutput("SavedMean")
      .IsTensor()
      .End()
      .AddOutput("SavedVariance")
      .IsTensor()
      .End()
      .AddOutput("Y")
      .IsTensor()
      .End()
216 217 218 219
      .AddOutput("ReserveSpace")
      .IsTensor()
      .IsOptional()
      .End()
W
Wangzheee 已提交
220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
      .AddAttr("epsilon")
      .IsNumLE(0.001f)
      .IsNumGE(0.0f)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsNumEQ(1)
      .End();
}

240
void ConvBNFusePass::ApplyImpl(ir::Graph* graph) const {
241 242
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
243
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
244 245

  auto* scope = param_scope();
246 247
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
248 249 250 251 252 253

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
254
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
255
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
256
  conv_bn_pattern(conv_input, conv_type(), false /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
257 258 259 260

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
W
Wangzheee 已提交
261 262 263 264
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING) << "Pass in op compat failed.";
      return;
    }
265
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
266 267 268
    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
W
Wojciech Uss 已提交
269 270
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,
    // bn_saved_variance
S
Sylwester Fraczek 已提交
271 272
    GET_CONV_BN_NODES(conv_bn_pattern);

W
Wojciech Uss 已提交
273 274 275
    // check if fuse can be done and if MKL-DNN should be used
    FuseOptions fuse_option = FindFuseOption(*conv, *batch_norm);
    if (fuse_option == DO_NOT_FUSE) {
276
      VLOG(3) << "do not perform " + conv_type() + " bn fuse";
W
Wojciech Uss 已提交
277 278 279
      return;
    }

280 281 282 283
    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

S
Sylwester Fraczek 已提交
284 285
    // Create eltwise_y (conv bias) variable
    VarDesc eltwise_y_in_desc(
286
        patterns::PDNodeName("fuse_conv_bn", conv_type() + "_eltwise_y_in"));
287 288 289
    eltwise_y_in_desc.SetShape(framework::vectorize(bn_bias_tensor->dims()));
    eltwise_y_in_desc.SetDataType(bn_bias_tensor->type());
    eltwise_y_in_desc.SetLoDLevel(bn_bias->Var()->GetLoDLevel());
W
Wojciech Uss 已提交
290
    eltwise_y_in_desc.SetPersistable(true);
S
Sylwester Fraczek 已提交
291 292 293 294 295 296 297 298 299 300
    auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
    auto* eltwise_y_in_tensor =
        scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

    // Initialize eltwise_y
    eltwise_y_in_tensor->Resize(bn_bias_tensor->dims());
    std::fill_n(eltwise_y_in_tensor->mutable_data<float>(platform::CPUPlace()),
                eltwise_y_in_tensor->numel(), 0.0f);

    // update weights and biases
301 302
    float epsilon =
        BOOST_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
S
Sylwester Fraczek 已提交
303
    recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
304
                               *bn_mean, *bn_variance, eltwise_y_in_tensor,
305
                               epsilon, conv_type());
S
Sylwester Fraczek 已提交
306

W
Wojciech Uss 已提交
307 308 309 310 311 312 313 314 315
    // with MKL-DNN fuse conv+bn into conv with bias
    // without MKL-DNN fuse conv+bn into conv+elementwise_add
    if (fuse_option == FUSE_MKLDNN) {
      auto input_names = conv->Op()->InputNames();
      bool has_bias = std::find(input_names.begin(), input_names.end(),
                                "Bias") != input_names.end();
      if (has_bias && conv->Op()->Input("Bias").size() > 0) {
        // reuse existing conv bias node
        auto conv_bias_names = conv->Op()->Input("Bias");
316 317 318
        PADDLE_ENFORCE_EQ(
            conv_bias_names.size(), 1UL,
            platform::errors::InvalidArgument("Find input var Bais error."));
W
Wojciech Uss 已提交
319 320
        auto* conv_bias_var = scope->FindVar(conv_bias_names[0]);
        auto* conv_bias_tensor = conv_bias_var->GetMutable<LoDTensor>();
321 322 323 324 325 326 327
        PADDLE_ENFORCE_EQ(
            conv_bias_tensor->dims(), eltwise_y_in_tensor->dims(),
            platform::errors::InvalidArgument(
                "Tensor convolution bias(%d) and elementwise y(%d) "
                "must have same dims.",
                conv_bias_tensor->dims().size(),
                eltwise_y_in_tensor->dims().size()));
W
Wojciech Uss 已提交
328 329 330 331 332 333 334 335 336 337 338

        auto eigen_conv_bias = EigenVector<float>::From(*conv_bias_tensor);
        eigen_conv_bias += EigenVector<float>::From(*eltwise_y_in_tensor);
      } else {
        // add new conv_bias node
        conv->Op()->SetInput(
            "Bias", std::vector<std::string>({eltwise_y_in_node->Name()}));
        IR_NODE_LINK_TO(eltwise_y_in_node, conv);
      }
      conv->Op()->SetOutput("Output",
                            std::vector<std::string>({bn_out->Name()}));
W
Wangzheee 已提交
339 340 341 342
      if (!IsCompat(*conv->Op())) {
        LOG(WARNING) << "conv_bn fuse pass in out conv op compat failed.";
        return;
      }
W
Wojciech Uss 已提交
343
      GraphSafeRemoveNodes(
344
          graph,
W
Wojciech Uss 已提交
345 346 347 348 349 350 351 352 353 354 355 356 357
          {conv_out, bn_scale, bn_bias, bn_mean, bn_variance, batch_norm,
           bn_mean_out, bn_variance_out, bn_saved_mean, bn_saved_variance});

      IR_NODE_LINK_TO(conv, bn_out);
      found_conv_bn_count++;
    } else {  // fuse_option == FUSE_NATIVE
      // create an elementwise add node.
      OpDesc desc;
      desc.SetInput("X", std::vector<std::string>({conv_out->Name()}));
      desc.SetInput("Y", std::vector<std::string>({eltwise_y_in_node->Name()}));
      desc.SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
      desc.SetType("elementwise_add");
      desc.SetAttr("axis", 1);
W
Wangzheee 已提交
358 359 360 361 362
      if (!IsCompat(desc)) {
        LOG(WARNING)
            << "conv_bn fuse pass in out elementwise_add op compat failed.";
        return;
      }
W
Wojciech Uss 已提交
363 364
      auto eltwise_op = g->CreateOpNode(&desc);  // OpDesc will be copied.

365 366 367
      GraphSafeRemoveNodes(graph, {bn_scale, bn_bias, bn_mean, bn_variance,
                                   batch_norm, bn_mean_out, bn_variance_out,
                                   bn_saved_mean, bn_saved_variance});
W
Wojciech Uss 已提交
368 369 370 371 372 373

      IR_NODE_LINK_TO(conv_out, eltwise_op);
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise_op);
      IR_NODE_LINK_TO(eltwise_op, bn_out);
      found_conv_bn_count++;
    }
S
Sylwester Fraczek 已提交
374 375
  };

376
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
377 378 379 380

  AddStatis(found_conv_bn_count);
}

W
Wangzheee 已提交
381 382 383 384 385 386 387 388 389
ConvEltwiseAddBNFusePass::ConvEltwiseAddBNFusePass() {
  AddOpCompat(OpCompat("conv2d"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
390
      .IsTensor()
W
Wangzheee 已提交
391 392 393
      .IsOptional()
      .End()
      .AddInput("ResidualData")
394
      .IsTensor()
W
Wangzheee 已提交
395 396 397 398 399 400
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
401
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
402 403
      .End()
      .AddAttr("paddings")
404
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
405 406 407 408 409 410 411 412 413
      .End()
      .AddAttr("padding_algorithm")
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
      .IsOptional()
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
414
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();

  AddOpCompat(OpCompat("batch_norm"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Scale")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddInput("Mean")
      .IsTensor()
      .End()
      .AddInput("Variance")
      .IsTensor()
      .End()
      .AddOutput("MeanOut")
      .IsTensor()
      .End()
      .AddOutput("VarianceOut")
      .IsTensor()
      .End()
      .AddOutput("SavedMean")
      .IsTensor()
      .End()
      .AddOutput("SavedVariance")
      .IsTensor()
      .End()
      .AddOutput("Y")
      .IsTensor()
      .End()
451 452 453 454
      .AddOutput("ReserveSpace")
      .IsTensor()
      .IsOptional()
      .End()
W
Wangzheee 已提交
455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474
      .AddAttr("epsilon")
      .IsNumLE(0.001f)
      .IsNumGE(0.0f)
      .End();

  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsNumEQ(1)
      .End();
}

475
void ConvEltwiseAddBNFusePass::ApplyImpl(ir::Graph* graph) const {
476 477
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
478
  FusePassBase::Init(name_scope_, graph);
S
Sylwester Fraczek 已提交
479 480

  auto* scope = param_scope();
481 482
  PADDLE_ENFORCE_NOT_NULL(
      scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
S
Sylwester Fraczek 已提交
483 484 485 486 487 488

  GraphPatternDetector gpd;
  auto* conv_input =
      gpd.mutable_pattern()
          ->NewNode(patterns::PDNodeName(name_scope_, "conv_input"))
          ->AsInput()
489
          ->assert_is_op_input(conv_type(), "Input");
S
Sylwester Fraczek 已提交
490
  patterns::ConvBN conv_bn_pattern(gpd.mutable_pattern(), name_scope_);
491
  conv_bn_pattern(conv_input, conv_type(), true /*with_eltwise_add*/);
S
Sylwester Fraczek 已提交
492 493 494 495

  int found_conv_bn_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
W
Wangzheee 已提交
496 497 498 499
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING) << "Pass in op compat failed.";
      return;
    }
500
    VLOG(4) << "handle " + conv_type() + "BN fuse";
S
Sylwester Fraczek 已提交
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
    // conv, batch_norm,
    // conv_weight, conv_out,
    // bn_scale, bn_bias, bn_mean, bn_variance,
    // bn_out, bn_mean_out, bn_variance_out, bn_saved_mean,bn_saved_variance
    GET_CONV_BN_NODES(conv_bn_pattern);
    // OPERATORS
    GET_IR_NODE_FROM_SUBGRAPH(eltwise, eltwise, conv_bn_pattern);
    // BIAS inputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_y_in, eltwise_y_in, conv_bn_pattern);
    // BIAS outputs
    GET_IR_NODE_FROM_SUBGRAPH(eltwise_out, eltwise_out, conv_bn_pattern);

    // Get eltwise_y (conv bias) variable
    auto* eltwise_y_in_tensor =
        scope->FindVar(eltwise_y_in->Name())->GetMutable<LoDTensor>();

    // Get batch norm bias
    auto* bn_bias_tensor =
        scope->FindVar(bn_bias->Name())->GetMutable<LoDTensor>();

    // update weights and biases
522 523
    float epsilon =
        BOOST_GET_CONST(float, batch_norm->Op()->GetAttr("epsilon"));
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565

    // if bias is an input to other ops as well then we cannot overwrite it
    // so we create separate elementwise Y in nodes
    if (eltwise_y_in->outputs.size() > 1) {
      // Make a copy of eltwise Y input tensor
      // Create eltwise_y (conv bias) variable
      VarDesc eltwise_y_in_desc(patterns::PDNodeName(
          name_scope_, "eltwise_y_in" + std::to_string(found_conv_bn_count)));
      eltwise_y_in_desc.SetShape(
          framework::vectorize(eltwise_y_in_tensor->dims()));
      eltwise_y_in_desc.SetDataType(eltwise_y_in_tensor->type());
      eltwise_y_in_desc.SetLoDLevel(eltwise_y_in->Var()->GetLoDLevel());
      eltwise_y_in_desc.SetPersistable(true);
      auto* eltwise_y_in_node = g->CreateVarNode(&eltwise_y_in_desc);
      auto* eltwise_y_in_tensor_ex =
          scope->Var(eltwise_y_in_node->Name())->GetMutable<LoDTensor>();

      // Initialize eltwise_y
      TensorCopy(*eltwise_y_in_tensor, platform::CPUPlace(),
                 eltwise_y_in_tensor_ex);

      recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
                                 *bn_mean, *bn_variance, eltwise_y_in_tensor_ex,
                                 epsilon, conv_type());
      // Set new var
      eltwise->Op()->RenameInput(eltwise_y_in->Name(),
                                 eltwise_y_in_node->Name());
      // Link new bias node to eltwise
      IR_NODE_LINK_TO(eltwise_y_in_node, eltwise);
      // unlink original bias from eltwise_op
      eltwise_y_in->outputs.erase(
          std::remove_if(eltwise_y_in->outputs.begin(),
                         eltwise_y_in->outputs.end(),
                         [&](Node*& n) {
                           return n->id() == eltwise->id() ? true : false;
                         }),
          eltwise_y_in->outputs.end());
    } else {
      recompute_bias_and_weights(scope, conv_weight, *bn_scale, *bn_bias_tensor,
                                 *bn_mean, *bn_variance, eltwise_y_in_tensor,
                                 epsilon, conv_type());
    }
S
Sylwester Fraczek 已提交
566 567 568 569

    // Update the elementwise_add node
    eltwise->Op()->SetAttr("axis", 1);
    eltwise->Op()->SetOutput("Out", std::vector<std::string>({bn_out->Name()}));
W
Wangzheee 已提交
570 571 572 573 574
    if (!IsCompat(*eltwise->Op())) {
      LOG(WARNING)
          << "conv_eltwise_bn fuse pass in out eltwise op compat failed.";
      return;
    }
S
Sylwester Fraczek 已提交
575
    GraphSafeRemoveNodes(
576
        graph,
S
Sylwester Fraczek 已提交
577 578 579 580 581 582 583 584
        {bn_scale, bn_bias, bn_mean, bn_variance, batch_norm, bn_mean_out,
         bn_variance_out, bn_saved_mean, bn_saved_variance, eltwise_out});

    IR_NODE_LINK_TO(eltwise, bn_out);

    found_conv_bn_count++;
  };

585
  gpd(graph, handler);
S
Sylwester Fraczek 已提交
586 587 588 589

  AddStatis(found_conv_bn_count);
}

W
Wangzheee 已提交
590 591 592 593 594 595 596 597 598
ConvTransposeBNFusePass::ConvTransposeBNFusePass() {
  AddOpCompat(OpCompat("conv2d_transpose"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
599
      .IsTensor()
W
Wangzheee 已提交
600 601 602 603 604
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
605 606 607 608 609 610 611 612 613
      .AddAttr("output_padding")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("output_size")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("groups")
614
      .IsNumEQ(1)
615 616 617 618
      .End()
      .AddAttr("dilations")
      .IsType<std::vector<int>>()
      .End()
W
Wangzheee 已提交
619
      .AddAttr("strides")
620
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
621 622
      .End()
      .AddAttr("paddings")
623
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
624 625
      .End()
      .AddAttr("padding_algorithm")
626
      .IsOptional()
W
Wangzheee 已提交
627
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
628 629
      .End()
      .AddAttr("data_format")
630
      .IsStringIn({"NCHW", "AnyLayout"})
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654
      .End();
}

ConvTransposeEltwiseAddBNFusePass::ConvTransposeEltwiseAddBNFusePass() {
  AddOpCompat(OpCompat("conv2d_transpose"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("output_padding")
      .IsType<std::vector<int>>()
      .IsOptional()
      .End()
      .AddAttr("output_size")
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
655 656 657
      .IsOptional()
      .End()
      .AddAttr("groups")
658
      .IsNumEQ(1)
W
Wangzheee 已提交
659 660
      .End()
      .AddAttr("dilations")
661 662 663 664 665 666 667 668 669
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("strides")
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("paddings")
      .IsType<std::vector<int>>()
      .End()
      .AddAttr("padding_algorithm")
670
      .IsOptional()
671
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
W
Wangzheee 已提交
672 673
      .End()
      .AddAttr("data_format")
674
      .IsStringIn({"NCHW", "AnyLayout"})
W
Wangzheee 已提交
675 676 677
      .End();
}

678 679
DepthwiseConvBNFusePass::DepthwiseConvBNFusePass() {
  AddOpCompat(OpCompat("depthwise_conv2d"))
W
Wangzheee 已提交
680 681 682 683 684 685 686
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("Filter")
      .IsTensor()
      .End()
      .AddInput("Bias")
687 688 689 690 691
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("ResidualData")
      .IsTensor()
W
Wangzheee 已提交
692 693 694 695 696 697
      .IsOptional()
      .End()
      .AddOutput("Output")
      .IsTensor()
      .End()
      .AddAttr("strides")
698
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
699 700
      .End()
      .AddAttr("paddings")
701
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
702 703 704
      .End()
      .AddAttr("padding_algorithm")
      .IsOptional()
705
      .IsStringIn({"EXPLICIT", "SAME", "VALID"})
W
Wangzheee 已提交
706 707 708 709 710
      .End()
      .AddAttr("groups")
      .IsNumGE(1)
      .End()
      .AddAttr("dilations")
711
      .IsType<std::vector<int>>()
W
Wangzheee 已提交
712 713 714 715 716 717
      .End()
      .AddAttr("data_format")
      .IsStringIn({"NCHW", "NHWC", "AnyLayout"})
      .End();
}

S
Sylwester Fraczek 已提交
718 719 720 721 722 723 724
}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(conv_bn_fuse_pass, paddle::framework::ir::ConvBNFusePass);
REGISTER_PASS(conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvEltwiseAddBNFusePass);
725 726 727 728
REGISTER_PASS(conv_transpose_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeBNFusePass);
REGISTER_PASS(conv_transpose_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::ConvTransposeEltwiseAddBNFusePass);
729 730 731 732
REGISTER_PASS(depthwise_conv_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvBNFusePass);
REGISTER_PASS(depthwise_conv_eltwiseadd_bn_fuse_pass,
              paddle::framework::ir::DepthwiseConvEltwiseAddBNFusePass);
P
Pei Yang 已提交
733 734 735
REGISTER_PASS_CAPABILITY(conv_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
736
            .LE("conv2d", 1)
P
Pei Yang 已提交
737 738 739 740
            .EQ("batch_norm", 0));
REGISTER_PASS_CAPABILITY(conv_eltwiseadd_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
741
            .LE("conv2d", 1)
742
            .LE("elementwise_add", 1)
P
Pei Yang 已提交
743
            .EQ("batch_norm", 0));
744 745 746 747 748 749
REGISTER_PASS_CAPABILITY(conv_transpose_eltwiseadd_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .LE("conv2d_transpose", 2)
            .LE("elementwise_add", 1)
            .EQ("batch_norm", 0));
750 751 752 753 754
REGISTER_PASS_CAPABILITY(conv_transpose_bn_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .LE("conv2d_transpose", 2)
            .EQ("batch_norm", 0));