build_cinn_pass.cc 24.1 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

17 18
#include <algorithm>
#include <iterator>
J
jiangcheng 已提交
19
#include <memory>
20
#include <regex>
J
jiangcheng 已提交
21 22 23
#include <string>
#include <unordered_map>
#include <unordered_set>
24
#include <utility>
J
jiangcheng 已提交
25 26
#include <vector>

27 28
#include "cinn/frontend/op_mapper_registry.h"
#include "cinn/frontend/op_mappers/use_op_mappers.h"
29 30
#include "gflags/gflags.h"
#include "glog/logging.h"
J
jiangcheng 已提交
31
#include "paddle/fluid/framework/ir/graph.h"
32
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
J
jiangcheng 已提交
33 34
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
35
#include "paddle/fluid/framework/op_info.h"
36
#include "paddle/fluid/framework/op_proto_maker.h"
37
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
38
#include "paddle/fluid/operators/cinn/cinn_launch_op.h"
39 40
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
J
jiangcheng 已提交
41

42 43 44
DECLARE_string(allow_cinn_ops);
DECLARE_string(deny_cinn_ops);

J
jiangcheng 已提交
45 46 47 48 49 50 51 52 53
namespace paddle {
namespace framework {
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

using GraphNodeVec = std::vector<Node*>;
using GraphNodeSet = std::unordered_set<Node*>;
54
using GraphNodeMap = std::unordered_map<Node*, Node*>;
J
jiangcheng 已提交
55

56
namespace {
57 58 59 60
// The delim(`;`) that is used to split the FLAGS_allow_cinn_ops
// & FLAGS_deny_cinn_ops.
constexpr char kDelim[] = ";";

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
const std::unordered_map<std::string, std::unordered_set<std::string>>
    kDenyParamMap = {{"batch_norm", {"ReserveSpace"}},
                     {"batch_norm_grad", {"ReserveSpace"}}};

std::unordered_set<std::string> GetDenyVarNames(const GraphNodeSet& cluster) {
  std::unordered_set<std::string> deny_var_set;

  auto get_debug_info = [](const std::unordered_set<std::string>& var_names) {
    std::string debug_info = "[";
    for (auto& var : var_names) {
      debug_info.append(var);
      debug_info.append(", ");
    }
    debug_info.append("]");
    return debug_info;
  };

  for (auto* op : cluster) {
    if (kDenyParamMap.count(op->Name())) {
      const auto* desc = op->Op();
81 82
      PADDLE_ENFORCE_NE(desc,
                        nullptr,
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
                        platform::errors::PreconditionNotMet(
                            "The Op %s's OpDesc should not be NULL, which has "
                            "a parameter in kDenyParamMap.",
                            op->Name().c_str()));

      auto deny_param_names = kDenyParamMap.at(op->Name());
      VLOG(4) << "We found deny param " << get_debug_info(deny_param_names)
              << " in op [" << op->Name() << "].";

      for (const auto& param_name : deny_param_names) {
        if (desc->Inputs().count(param_name)) {
          const auto& arg_names = desc->Input(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }

        if (desc->HasOutput(param_name)) {
          const auto& arg_names = desc->Output(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }
      }
    }
  }

  VLOG(4) << "All deny var names are " << get_debug_info(deny_var_set);

  return deny_var_set;
}

119 120 121 122 123 124 125 126 127 128
std::unordered_set<std::string> StringSplit(const std::string& str,
                                            const std::string& delim) {
  std::regex reg(delim);
  std::unordered_set<std::string> elems{
      std::sregex_token_iterator(str.begin(), str.end(), reg, -1),
      std::sregex_token_iterator()};
  elems.erase("");
  return elems;
}

129 130 131 132 133
int ExtractOpRole(const GraphNodeSet& cluster) {
  std::unordered_set<int> op_roles;
  std::string attr_name = OpProtoAndCheckerMaker::OpRoleAttrName();
  for (auto* n : cluster) {
    if (n->Op() && n->Op()->HasAttr(attr_name)) {
R
Ruibiao Chen 已提交
134
      op_roles.insert(PADDLE_GET_CONST(int, n->Op()->GetAttr(attr_name)));
135 136 137 138 139 140 141 142 143
    }
  }
  if (op_roles.size() == 1U) {
    return *(op_roles.begin());
  } else {
    return static_cast<int>(OpRole::kNotSpecified);
  }
}

144
// Deal with input var nodes of the target subgraph:
145
// create a new input var node and it's feed op node
146
void AddFeedOpAndVar(const GraphNodeSet& input_vars,
147
                     const GraphNodeSet& cluster,
148
                     const GraphNodeMap& old_op2new_op,
149 150
                     const GraphNodeMap& old_var2new_var,
                     Graph* graph) {
151
  for (auto* old_var : input_vars) {
152 153 154 155 156 157
    // create feed op
    OpDesc desc;
    desc.SetType("feed");
    desc.SetOutput("Out", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

158 159
    // get new feed var node
    auto* var = old_var2new_var.at(old_var);
160
    VLOG(4) << "Add Feed Op before the input var: " << var->Name();
161 162

    // link feed op and feed var
163
    IR_NODE_LINK_TO(op, var);
164 165 166 167

    // link feed var to cluster op
    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
168
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
169 170
      }
      // Do not need relink old op or old var here, they will be
171
      // fixed in RemoveSubGraphFromGraph, here we just deal with
172 173 174 175 176 177 178
      // new subgraph's node.
    }
  }
}

// Deal with subgraph's outputs var node:
// create a new output var node and it's fetch op
179 180
void AddOutputVar(const GraphNodeSet& output_vars,
                  const GraphNodeSet& cluster,
181
                  const GraphNodeMap& old_op2new_op,
182 183
                  const GraphNodeMap& old_var2new_var,
                  Graph* graph) {
184
  for (auto* old_var : output_vars) {
185 186 187 188 189 190
    // create fetch op
    OpDesc desc;
    desc.SetType("fetch");
    desc.SetInput("X", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

191
    auto* var = old_var2new_var.at(old_var);
192
    VLOG(4) << "Add Output Var Node: " << var->Name();
193

194 195 196
    // link fetch op and fetch var
    IR_NODE_LINK_TO(var, op);

197 198
    for (auto* old_op : old_var->inputs) {
      if (cluster.count(old_op)) {
199
        IR_NODE_LINK_TO(old_op2new_op.at(old_op), var);
200 201 202 203 204
      }
    }
  }
}

205 206 207 208 209
std::unordered_set<std::string> ExtractNoNeedBufferFeeds(
    const GraphNodeSet& cluster, const GraphNodeSet& cluster_inputs) {
  // 1. Find op with NoNeedBufferVarsInferer defined and collect its input nodes
  std::unordered_map<Node*, GraphNodeSet> op_node2no_need_buffer_nodes;
  for (auto* op_node : cluster) {
210 211 212 213 214 215
    const auto* op = OpInfoMap::Instance().GetNullable(op_node->Name());
    // If op not registered in Paddle, skip
    if (!op) {
      continue;
    }
    auto& inferer = op->NoNeedBufferVarsInferer();
216 217 218 219 220
    if (!inferer) {
      continue;
    }
    auto* op_desc = op_node->Op();
    PADDLE_ENFORCE_NOT_NULL(
221 222 223
        op_desc,
        platform::errors::PreconditionNotMet(
            "The op desc of node in cluster shouldn't be null."));
224 225 226
    auto inferred_params =
        inferer(op_desc->Inputs(), op_desc->Inputs(), op_desc->GetAttrMap());
    std::unordered_set<std::string> inferred_args;
227 228
    std::for_each(inferred_params.begin(),
                  inferred_params.end(),
229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
                  [&op_desc, &inferred_args](const std::string& param) {
                    const auto& args = op_desc->Input(param);
                    inferred_args.insert(args.begin(), args.end());
                  });
    auto& no_need_buffer_nodes = op_node2no_need_buffer_nodes[op_node];
    for (auto* input_node : op_node->inputs) {
      if (input_node->Var() && inferred_args.count(input_node->Name())) {
        VLOG(4) << "Input node(" << input_node->Name() << ") of op("
                << op_node->Name() << ") is no_need_buffer";
        no_need_buffer_nodes.insert(input_node);
      }
    }
  }

  // 2. Extract no_need_buffer nodes from cluster_inputs by checking
  // all of their outputs are op nodes with NoNeedBufferVarsInferer
  // and they used as no_need_buffer inputs.
  auto check_all_used_as_no_need_buffer_fn =
      [&op_node2no_need_buffer_nodes](Node* var_node) -> bool {
    for (auto* output_node : var_node->outputs) {
      auto it = op_node2no_need_buffer_nodes.find(output_node);
      if (it == op_node2no_need_buffer_nodes.end()) {
        VLOG(4) << "Var node(" << var_node->Name() << ")'s output node("
                << output_node->Name()
                << ") doesn't have NoNeedBufferVarsInferer";
        return false;
      }
      if (it->second.count(var_node) == 0) {
        VLOG(4) << "Var node("
                << ") is not used as no_need_buffer inputs";
        return false;
      }
    }
    return true;
  };
  std::unordered_set<std::string> result;
  for (const auto& op2inputs_pair : op_node2no_need_buffer_nodes) {
    for (auto* input_node : op2inputs_pair.second) {
      if (cluster_inputs.count(input_node) &&
          check_all_used_as_no_need_buffer_fn(input_node)) {
        VLOG(4) << "Input node(" << input_node->Name()
                << ") is declared as no_need_buffer cluster_inputs";
        result.insert(input_node->Name());
      }
    }
  }
  return result;
}

J
jiangcheng 已提交
278 279
// Create new subgraph with and op nodes are cluster nodes, and all
// var node are from internal nodes
280 281
std::unique_ptr<Graph> CreateNewSubGraph(const GraphNodeSet& cluster,
                                         const GraphNodeSet& cluster_internals,
282 283
                                         const GraphNodeSet& cluster_inputs,
                                         const GraphNodeSet& cluster_outputs) {
J
jiangcheng 已提交
284 285
  // Graph's constructor must has one parameter, and in our code,
  // the ProgramDesc is useless, so here we pass a temporary object.
286
  auto subgraph = std::make_unique<Graph>(framework::ProgramDesc());
J
jiangcheng 已提交
287

288
  GraphNodeMap old_op2new_op;
J
jiangcheng 已提交
289
  for (auto* op : cluster) {
290
    auto sub_node = subgraph->CreateOpNode(op->Op());
J
jiangcheng 已提交
291 292 293
    old_op2new_op[op] = sub_node;
  }

294
  GraphNodeMap old_var2new_var;
J
jiangcheng 已提交
295
  for (auto* var : cluster_internals) {
296 297 298 299 300 301 302 303 304 305 306 307 308
    if (!var->Var()) {
      // skip control var

      // TODO(jiangcheng05): CINN not support control var now, so here we skip
      // it, but it may incur result incorrect problem. In detail, for two
      // unconnected ops, with control var, an op must run before another op.
      // If we remove the control var, the program wouldn't guarantee the run
      // ordering, in other words, the result may incorrect.
      VLOG(4)
          << "The internal var [" << var->Name() << "]'s vardesc empty,"
          << " it may be a control var, but CINN not support control var now.";
      continue;
    }
309
    auto* sub_node = subgraph->CreateVarNode(var->Var());
J
jiangcheng 已提交
310 311
    old_var2new_var[var] = sub_node;
  }
312 313 314 315 316 317 318 319 320 321 322 323
  for (auto* var : cluster_inputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
  for (auto* var : cluster_outputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
J
jiangcheng 已提交
324

325
  GraphNodeSet need_feed_vars;
326
  std::unordered_set<Node*> param_vars, output_vars;
J
jiangcheng 已提交
327 328 329 330 331
  // the subgraph is independently, so here we only need link
  // to the node in new subgraph, and discard the link to
  // out-graph.
  for (auto* op : cluster) {
    for (auto* var : op->inputs) {
332 333 334 335
      if (!var->Var()) {
        // skip control var
        continue;
      }
336 337 338 339
      // one output var maybe an input of the cluster
      if (cluster_internals.count(var) ||
          (cluster_outputs.count(var) && old_var2new_var.count(var))) {
        IR_NODE_LINK_TO(old_var2new_var.at(var), old_op2new_op.at(op));
340
      } else if (cluster_inputs.count(var) && var->Var() != nullptr) {
341 342 343 344 345 346 347 348 349 350 351
        if (var->Var()->IsParameter()) {
          // Parameters have been preserved in scope, compared to feed var,
          // param just need add new var and don't need add feed op.
          // The var is used for check whether we need preserve the tensor
          // when transform paddle scope to CINN scope.
          param_vars.insert(var);
        } else {
          // When the var is subgraph input and the var is not parameter,
          // we need add a new feed op to feed the var.
          need_feed_vars.insert(var);
        }
J
jiangcheng 已提交
352 353 354
      }
    }
    for (auto* var : op->outputs) {
355 356 357 358
      if (!var->Var()) {
        // skip control var
        continue;
      }
J
jiangcheng 已提交
359
      if (cluster_internals.count(var)) {
360
        IR_NODE_LINK_TO(old_op2new_op.at(op), old_var2new_var.at(var));
361
      } else if (cluster_outputs.count(var) && var->Var() != nullptr) {
362 363 364 365
        // Create new output var node to guarantee the independency of
        // subgraph. In other words, the subgraph has no connection with
        // other graph, even the input graph.
        output_vars.insert(var);
J
jiangcheng 已提交
366 367 368 369
      }
    }
  }

370 371
  AddFeedOpAndVar(
      need_feed_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
372
  AddFeedOpAndVar(
373 374 375
      param_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
  AddOutputVar(
      output_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
376 377
  // Save lists of input variables, internal variables and output variables
  // of the cluster as attributes of the subgraph for convenience.
378 379 380 381 382 383 384 385 386 387 388 389
  auto collect_names_fn =
      [](const GraphNodeSet& nodes,
         const std::unordered_set<std::string>& ignore_names) {
        auto result = std::make_unique<std::vector<std::string>>();
        for (auto* node : nodes) {
          if (!node->Var() || ignore_names.count(node->Name())) {
            continue;
          }
          result->emplace_back(node->Name());
        }
        return result;
      };
390 391 392 393 394 395 396
  subgraph->Set<std::vector<std::string>>(
      kInternalVars, collect_names_fn(cluster_internals, {}).release());
  subgraph->Set<std::vector<std::string>>(
      kOutputVars, collect_names_fn(cluster_outputs, {}).release());
  // Divide input variables into two parts: one is common and will be used
  // in execution, the other may be empty and it is those variables whose
  // buffer are not needed and only be used in graph symbolization
397 398
  auto no_need_buffer_feeds = std::make_unique<std::unordered_set<std::string>>(
      ExtractNoNeedBufferFeeds(cluster, cluster_inputs));
399 400 401
  subgraph->Set<std::vector<std::string>>(
      kInputVars,
      collect_names_fn(cluster_inputs, *no_need_buffer_feeds).release());
402 403
  subgraph->Set<std::unordered_set<std::string>>(
      kNoNeedBufferFeeds, no_need_buffer_feeds.release());
404 405
  // initialize empty map for kMemOptVarInfoFromMainGraph attribute,
  // it will be filled on the share_mem_opt_info_to_subgraph pass
406
  subgraph->GetOrInit<Name2VarInfoMap>(kMemOptVarInfoFromMainGraph);
407
  return subgraph;
J
jiangcheng 已提交
408 409 410 411
}

// This interface is used to classify all variables involved in a cluster into
// three types: inputs, outputs, and internals.
412 413 414
// The input node is some subgraph op's input but not any subgraph op's output.
// The output node is some subgraph op's output and some out-graph op's input.
// Specially, the internal node is a node that only used by subgraph, and
J
jiangcheng 已提交
415
// out-graph should not using this node at all.
416 417
// cluster_inputs & cluster_outputs & cluster_internals == NULL
// cluster_outputs | cluster_internals == all graph op's outputs node
418 419 420
void AnalyseClusterVariables(
    const GraphNodeSet& cluster,
    const std::unordered_set<std::string>& deny_var_set,
421 422
    GraphNodeSet* cluster_inputs,
    GraphNodeSet* cluster_outputs,
423
    GraphNodeSet* cluster_internals) {
J
jiangcheng 已提交
424 425
  // collecting all input and output of op
  for (auto* op_node : cluster) {
426
    const auto& op_name = op_node->Name();
J
jiangcheng 已提交
427
    for (auto* input_var_node : op_node->inputs) {
428 429 430 431
      if (!deny_var_set.count(input_var_node->Name())) {
        // ignore deny var node
        cluster_inputs->insert(input_var_node);
      }
J
jiangcheng 已提交
432 433
    }
    for (auto* output_var_node : op_node->outputs) {
434 435 436
      if (!deny_var_set.count(output_var_node->Name())) {
        cluster_outputs->insert(output_var_node);
      }
J
jiangcheng 已提交
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
    }
  }
  // remove output node from cluster_inputs,
  // and add cluster_internals node
  for (auto* var_node : *cluster_outputs) {
    if (cluster_inputs->count(var_node) > 0) {
      // if a input node also exists in output list, remove
      cluster_inputs->erase(var_node);

      // the internal node is must an output node of sub-graph,
      // but not any input node of out-graph.
      bool is_only_used_internal = true;
      for (auto* next_op_node : var_node->outputs) {
        is_only_used_internal &= (cluster.count(next_op_node) > 0);
      }
      if (is_only_used_internal) {
        cluster_internals->insert(var_node);
      }
    }
  }

  // if a output node also exists in internal list, remove.
  for (auto* var_node : *cluster_internals) {
    cluster_outputs->erase(var_node);
  }
}

464
void AddLinkToCinnOp(const GraphNodeSet& cluster_inputs,
465 466
                     const GraphNodeSet& cluster_outputs,
                     Node* cinn_op_node) {
467 468 469 470 471 472 473 474 475 476 477 478 479 480
  // add new link from cluster_inputs to cinn_op_node
  for (auto* var_node : cluster_inputs) {
    IR_NODE_LINK_TO(var_node, cinn_op_node);
  }

  // add new link from cinn_op_node to cluster_outputs
  for (auto* var_node : cluster_outputs) {
    IR_NODE_LINK_TO(cinn_op_node, var_node);
  }
}

void AddCinnOpToGraph(const GraphNodeSet& cluster,
                      const GraphNodeSet& cluster_inputs,
                      const GraphNodeSet& cluster_outputs,
481
                      int64_t compilation_key,
482 483
                      const std::unordered_set<std::string>& deny_var_set,
                      Graph* graph) {
484 485 486
  // Add the cinn launch op
  framework::OpDesc cinn_op_desc;
  cinn_op_desc.SetType(kCinnLaunchOp);
487

488 489
  const auto& subgraph =
      CinnCompiler::GetInstance()->FindGraph(compilation_key);
490
  const auto& no_need_buffer_feeds =
491 492
      subgraph.Get<std::unordered_set<std::string>>(kNoNeedBufferFeeds);

493 494 495 496 497 498 499
  cinn_op_desc.SetInput(operators::kX,
                        subgraph.Get<std::vector<std::string>>(kInputVars));
  cinn_op_desc.SetInput(operators::kNoNeedBufferX,
                        std::vector<std::string>(no_need_buffer_feeds.begin(),
                                                 no_need_buffer_feeds.end()));
  cinn_op_desc.SetOutput(operators::kOutputs,
                         subgraph.Get<std::vector<std::string>>(kOutputVars));
500
  cinn_op_desc.SetAttr(operators::kCompilationKey, compilation_key);
501 502 503 504
  cinn_op_desc.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                       ExtractOpRole(cluster));
  cinn_op_desc.Flush();
  auto* cinn_op_node = graph->CreateOpNode(&cinn_op_desc);
505
  // Add new links from or to the cinn launch op node
506
  AddLinkToCinnOp(cluster_inputs, cluster_outputs, cinn_op_node);
507 508

  VLOG(4) << "Add op [" << kCinnLaunchOp << "] into graph.";
J
jiangcheng 已提交
509 510 511 512 513 514
}

// Removing cluster node and internals node from Graph
void RemoveSubGraphFromGraph(const GraphNodeSet& cluster,
                             const GraphNodeSet& cluster_internals,
                             Graph* graph) {
515 516 517 518 519 520
  const std::unordered_set<const Node*> const_cluster{cluster.cbegin(),
                                                      cluster.cend()};
  const std::unordered_set<const Node*> const_internals{
      cluster_internals.cbegin(), cluster_internals.cend()};
  ir::GraphSafeRemoveNodes(graph, const_cluster);
  ir::GraphSafeRemoveNodes(graph, const_internals);
J
jiangcheng 已提交
521 522
}

523
// Replacing Cinn subgraph to a cinn op node, whose op_type is
J
jiangcheng 已提交
524 525
// kCinnLaunchOp, and inputs ares cluster_inputs and outputs are
// cluster_outputs.
526
// Meanwhile, move all links of cluster to the cinn op.
527
void ReplaceSubGraphWithCinnOpNode(
528 529 530 531
    const GraphNodeSet& cluster,
    const GraphNodeSet& cluster_inputs,
    const GraphNodeSet& cluster_outputs,
    const GraphNodeSet& cluster_internals,
532
    int64_t compilation_key,
533 534
    const std::unordered_set<std::string>& deny_var_set,
    Graph* graph) {
535
  // Add the cinn op node whose name is "kCinnLaunchOp" into graph
536 537 538 539 540 541
  AddCinnOpToGraph(cluster,
                   cluster_inputs,
                   cluster_outputs,
                   compilation_key,
                   deny_var_set,
                   graph);
542
  // Remove the cinn subgraph from graph
J
jiangcheng 已提交
543 544 545
  RemoveSubGraphFromGraph(cluster, cluster_internals, graph);
}

S
sneaxiy 已提交
546 547 548 549 550 551 552 553 554
static bool IsInplaceOp(const OpDesc& op_desc) {
  auto inputs = op_desc.InputArgumentNames();
  std::unordered_set<std::string> input_set(inputs.begin(), inputs.end());
  for (auto& name : op_desc.OutputArgumentNames()) {
    if (input_set.count(name) > 0) return true;
  }
  return false;
}

J
jiangcheng 已提交
555 556 557 558
// Search all subgraphs which all op node supported by CINN,
// Here we using SubgraphDetector to detecte the subgraph that
// all of op node supported by CINN. We using OpMapperRegistry
// to check whether the op node supported by CINN.
559
void SearchAllSubgraphs(Graph* graph) {
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
  auto allow_ops = StringSplit(FLAGS_allow_cinn_ops, kDelim);
  auto deny_ops = StringSplit(FLAGS_deny_cinn_ops, kDelim);
  auto teller = [&allow_ops, &deny_ops](const Node* node) {
    bool registered = ::cinn::frontend::OpMapperRegistry::Global()->Find(
                          node->Name()) != nullptr;
    // if the op type is registered in CINN and allow_ops is not empty, return
    // true only when it is in allow_ops
    if (allow_ops.size()) {
      return registered && allow_ops.count(node->Name());
    }
    // if the op type is registered in CINN and deny_ops is not empty, return
    // true only when it is not in deny_ops
    if (deny_ops.size()) {
      return registered && !deny_ops.count(node->Name());
    }
S
sneaxiy 已提交
575

576 577
    // if the user doesn't set FLAGS_allow_cinn_ops and FLAGS_deny_cinn_ops,
    // return true only when it is registered in CINN
S
sneaxiy 已提交
578
    return registered && (node->IsOp() && !IsInplaceOp(*node->Op()));
J
jiangcheng 已提交
579
  };
580 581
  VLOG(4) << "The allowed Cinn Ops: " << FLAGS_allow_cinn_ops;
  VLOG(4) << "The denied Cinn Ops: " << FLAGS_deny_cinn_ops;
J
jiangcheng 已提交
582 583 584
  std::vector<GraphNodeVec> clusters =
      framework::ir::SubgraphDetector(graph, teller)();

585 586 587 588 589 590 591 592 593 594
  auto cluster_debug_info = [](const GraphNodeSet& cluster) {
    std::string res = "(";
    for (auto* node : cluster) {
      res.append(node->Name());
      res.append(", ");
    }
    res.append(")");
    return res;
  };

595
  auto* cinn_compiler = CinnCompiler::GetInstance();
J
jiangcheng 已提交
596
  for (const auto& node_vec : clusters) {
597
    // Classify var node to inputs, outputs, and internals.
J
jiangcheng 已提交
598 599
    GraphNodeSet cluster_set(node_vec.begin(), node_vec.end());

600 601
    auto deny_var_set = GetDenyVarNames(cluster_set);

J
jiangcheng 已提交
602
    GraphNodeSet cluster_inputs, cluster_outputs, cluster_internals;
603 604 605 606 607
    AnalyseClusterVariables(cluster_set,
                            deny_var_set,
                            &cluster_inputs,
                            &cluster_outputs,
                            &cluster_internals);
608 609 610 611 612 613 614

    VLOG(4) << "Cluster Ops: " << cluster_debug_info(cluster_set);
    VLOG(4) << "Cluster input vars: " << cluster_debug_info(cluster_inputs);
    VLOG(4) << "Cluster output vars: " << cluster_debug_info(cluster_outputs);
    VLOG(4) << "Cluster internal vars: "
            << cluster_debug_info(cluster_internals);

615 616
    // Create a new subgraph according to the found cluster and
    // save it in CinnCompiler
617
    auto compilation_key = cinn_compiler->AddGraph(CreateNewSubGraph(
618
        cluster_set, cluster_internals, cluster_inputs, cluster_outputs));
619 620
    VLOG(4) << "Compilation Key:\n"
            << cinn_compiler->ReadableKey(compilation_key);
621

622
    // Replace the found cluster to a new cinn op node
623 624 625 626 627 628 629
    ReplaceSubGraphWithCinnOpNode(cluster_set,
                                  cluster_inputs,
                                  cluster_outputs,
                                  cluster_internals,
                                  compilation_key,
                                  deny_var_set,
                                  graph);
J
jiangcheng 已提交
630 631
  }
}
632
}  // namespace
J
jiangcheng 已提交
633

634
void BuildCinnPass::ApplyImpl(Graph* graph) const { SearchAllSubgraphs(graph); }
J
jiangcheng 已提交
635 636 637 638 639 640

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(build_cinn_pass, paddle::framework::paddle2cinn::BuildCinnPass);