test_input_spec.py 10.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
17
import paddle
18 19 20
import paddle.fluid as fluid
from paddle.static import InputSpec
from paddle.fluid.framework import core, convert_np_dtype_to_dtype_
21
from paddle.fluid.dygraph.dygraph_to_static.utils import _compatible_non_tensor_spec
22 23 24 25 26 27 28 29 30 31 32 33 34


class TestInputSpec(unittest.TestCase):
    def test_default(self):
        tensor_spec = InputSpec([3, 4])
        self.assertEqual(tensor_spec.dtype,
                         convert_np_dtype_to_dtype_('float32'))
        self.assertEqual(tensor_spec.name, None)

    def test_from_tensor(self):
        x_bool = fluid.layers.fill_constant(shape=[1], dtype='bool', value=True)
        bool_spec = InputSpec.from_tensor(x_bool)
        self.assertEqual(bool_spec.dtype, x_bool.dtype)
35
        self.assertEqual(list(bool_spec.shape), list(x_bool.shape))
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        self.assertEqual(bool_spec.name, x_bool.name)

        bool_spec2 = InputSpec.from_tensor(x_bool, name='bool_spec')
        self.assertEqual(bool_spec2.name, bool_spec2.name)

    def test_from_numpy(self):
        x_numpy = np.ones([10, 12])
        x_np_spec = InputSpec.from_numpy(x_numpy)
        self.assertEqual(x_np_spec.dtype,
                         convert_np_dtype_to_dtype_(x_numpy.dtype))
        self.assertEqual(x_np_spec.shape, x_numpy.shape)
        self.assertEqual(x_np_spec.name, None)

        x_numpy2 = np.array([1, 2, 3, 4]).astype('int64')
        x_np_spec2 = InputSpec.from_numpy(x_numpy2, name='x_np_int64')
        self.assertEqual(x_np_spec2.dtype,
                         convert_np_dtype_to_dtype_(x_numpy2.dtype))
        self.assertEqual(x_np_spec2.shape, x_numpy2.shape)
        self.assertEqual(x_np_spec2.name, 'x_np_int64')

    def test_shape_with_none(self):
        tensor_spec = InputSpec([None, 4, None], dtype='int8', name='x_spec')
        self.assertEqual(tensor_spec.dtype, convert_np_dtype_to_dtype_('int8'))
        self.assertEqual(tensor_spec.name, 'x_spec')
        self.assertEqual(tensor_spec.shape, (-1, 4, -1))

    def test_shape_raise_error(self):
        # 1. shape should only contain int and None.
        with self.assertRaises(ValueError):
            tensor_spec = InputSpec(['None', 4, None], dtype='int8')

        # 2. shape should be type `list` or `tuple`
        with self.assertRaises(TypeError):
            tensor_spec = InputSpec(4, dtype='int8')

        # 3. len(shape) should be greater than 0.
        with self.assertRaises(ValueError):
            tensor_spec = InputSpec([], dtype='int8')

    def test_batch_and_unbatch(self):
        tensor_spec = InputSpec([10])
        # insert batch_size
        batch_tensor_spec = tensor_spec.batch(16)
        self.assertEqual(batch_tensor_spec.shape, (16, 10))

        # unbatch
        unbatch_spec = batch_tensor_spec.unbatch()
        self.assertEqual(unbatch_spec.shape, (10, ))

        # 1. `unbatch` requires len(shape) > 1
        with self.assertRaises(ValueError):
            unbatch_spec.unbatch()

        # 2. `batch` requires len(batch_size) == 1
        with self.assertRaises(ValueError):
            tensor_spec.batch([16, 12])

        # 3. `batch` requires type(batch_size) == int
        with self.assertRaises(TypeError):
            tensor_spec.batch('16')

    def test_eq_and_hash(self):
        tensor_spec_1 = InputSpec([10, 16], dtype='float32')
        tensor_spec_2 = InputSpec([10, 16], dtype='float32')
        tensor_spec_3 = InputSpec([10, 16], dtype='float32', name='x')
        tensor_spec_4 = InputSpec([16], dtype='float32', name='x')

        # override ``__eq__`` according to [shape, dtype, name]
        self.assertTrue(tensor_spec_1 == tensor_spec_2)
        self.assertTrue(tensor_spec_1 != tensor_spec_3)  # different name
        self.assertTrue(tensor_spec_3 != tensor_spec_4)  # different shape

        # override ``__hash__``  according to [shape, dtype]
        self.assertTrue(hash(tensor_spec_1) == hash(tensor_spec_2))
        self.assertTrue(hash(tensor_spec_1) == hash(tensor_spec_3))
        self.assertTrue(hash(tensor_spec_3) != hash(tensor_spec_4))


114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
class NetWithNonTensorSpec(paddle.nn.Layer):
    def __init__(self, in_num, out_num):
        super(NetWithNonTensorSpec, self).__init__()
        self.linear_1 = paddle.nn.Linear(in_num, out_num)
        self.bn_1 = paddle.nn.BatchNorm1D(out_num)

        self.linear_2 = paddle.nn.Linear(in_num, out_num)
        self.bn_2 = paddle.nn.BatchNorm1D(out_num)

        self.linear_3 = paddle.nn.Linear(in_num, out_num)
        self.bn_3 = paddle.nn.BatchNorm1D(out_num)

    def forward(self, x, bool_v=False, str_v="bn", int_v=1, list_v=None):
        x = self.linear_1(x)
        if 'bn' in str_v:
            x = self.bn_1(x)

        if bool_v:
            x = self.linear_2(x)
            x = self.bn_2(x)

        config = {"int_v": int_v, 'other_key': "value"}
        if list_v and list_v[-1] > 2:
            x = self.linear_3(x)
            x = self.another_func(x, config)

        out = paddle.mean(x)
        return out

    def another_func(self, x, config=None):
        # config is a dict actually
        use_bn = config['int_v'] > 0

        x = self.linear_1(x)
        if use_bn:
            x = self.bn_3(x)

        return x


class TestNetWithNonTensorSpec(unittest.TestCase):
    def setUp(self):
        self.in_num = 16
        self.out_num = 16
        self.x_spec = paddle.static.InputSpec([-1, 16], name='x')
        self.x = paddle.randn([4, 16])

    @classmethod
    def setUpClass(cls):
        paddle.disable_static()

    def test_non_tensor_bool(self):
        specs = [self.x_spec, False]
        self.check_result(specs, 'bool')

    def test_non_tensor_str(self):
        specs = [self.x_spec, True, "xxx"]
        self.check_result(specs, 'str')

    def test_non_tensor_int(self):
        specs = [self.x_spec, True, "bn", 10]
        self.check_result(specs, 'int')

    def test_non_tensor_list(self):
        specs = [self.x_spec, False, "bn", -10, [4]]
        self.check_result(specs, 'list')

    def check_result(self, specs, path):
        path = './net_non_tensor_' + path

        net = NetWithNonTensorSpec(self.in_num, self.out_num)
        net.eval()
        # dygraph out
        dy_out = net(self.x, *specs[1:])

        # jit.save directly
        paddle.jit.save(net, path + '_direct', input_spec=specs)
        load_net = paddle.jit.load(path + '_direct')
        load_net.eval()
        pred_out = load_net(self.x)

        self.assertTrue(np.allclose(dy_out, pred_out))

        # @to_static by InputSpec
        net = paddle.jit.to_static(net, input_spec=specs)
        st_out = net(self.x, *specs[1:])

        self.assertTrue(np.allclose(dy_out, st_out))

        # jit.save and jit.load
        paddle.jit.save(net, path)
        load_net = paddle.jit.load(path)
        load_net.eval()
        load_out = load_net(self.x)

        self.assertTrue(np.allclose(st_out, load_out))

    def test_spec_compatible(self):
        net = NetWithNonTensorSpec(self.in_num, self.out_num)

        specs = [self.x_spec, False, "bn", -10]
        net = paddle.jit.to_static(net, input_spec=specs)
        net.eval()

        path = './net_twice'

        # NOTE: check input_specs_compatible
        new_specs = [self.x_spec, True, "bn", 10]
        with self.assertRaises(ValueError):
            paddle.jit.save(net, path, input_spec=new_specs)

        dy_out = net(self.x)

        paddle.jit.save(net, path, [self.x_spec, False, "bn"])
        load_net = paddle.jit.load(path)
        load_net.eval()
        pred_out = load_net(self.x)

        self.assertTrue(np.allclose(dy_out, pred_out))


class NetWithNonTensorSpecPrune(paddle.nn.Layer):
    def __init__(self, in_num, out_num):
        super(NetWithNonTensorSpecPrune, self).__init__()
        self.linear_1 = paddle.nn.Linear(in_num, out_num)
        self.bn_1 = paddle.nn.BatchNorm1D(out_num)

    def forward(self, x, y, use_bn=False):
        x = self.linear_1(x)
        if use_bn:
            x = self.bn_1(x)

        out = paddle.mean(x)

        if y is not None:
            loss = paddle.mean(y) + out

        return out, loss


class TestNetWithNonTensorSpecWithPrune(unittest.TestCase):
    def setUp(self):
        self.in_num = 16
        self.out_num = 16
        self.x_spec = paddle.static.InputSpec([-1, 16], name='x')
        self.y_spec = paddle.static.InputSpec([16], name='y')
        self.x = paddle.randn([4, 16])
        self.y = paddle.randn([16])

    @classmethod
    def setUpClass(cls):
        paddle.disable_static()

    def test_non_tensor_with_prune(self):
        specs = [self.x_spec, self.y_spec, True]
        path = './net_non_tensor_prune_'

        net = NetWithNonTensorSpecPrune(self.in_num, self.out_num)
        net.eval()
        # dygraph out
        dy_out, _ = net(self.x, self.y, *specs[2:])

        # jit.save directly
        paddle.jit.save(net, path + '_direct', input_spec=specs)
        load_net = paddle.jit.load(path + '_direct')
        load_net.eval()
        pred_out, _ = load_net(self.x, self.y)

        self.assertTrue(np.allclose(dy_out, pred_out))

        # @to_static by InputSpec
        net = paddle.jit.to_static(net, input_spec=specs)
        st_out, _ = net(self.x, self.y, *specs[2:])

        self.assertTrue(np.allclose(dy_out, st_out))

        # jit.save and jit.load with prune y and loss
        prune_specs = [self.x_spec, True]
        paddle.jit.save(net, path, prune_specs, output_spec=[st_out])
        load_net = paddle.jit.load(path)
        load_net.eval()
        load_out = load_net(self.x)  # no y and no loss

        self.assertTrue(np.allclose(st_out, load_out))


class UnHashableObject:
    def __init__(self, val):
        self.val = val

    def __hash__(self):
        raise TypeError("Unsupported to call hash()")


class TestCompatibleNonTensorSpec(unittest.TestCase):
    def test_case(self):
        self.assertTrue(_compatible_non_tensor_spec([1, 2, 3], [1, 2, 3]))
        self.assertFalse(_compatible_non_tensor_spec([1, 2, 3], [1, 2]))
        self.assertFalse(_compatible_non_tensor_spec([1, 2, 3], [1, 3, 2]))

        # not supported unhashable object.
        self.assertTrue(
            _compatible_non_tensor_spec(
                UnHashableObject(1), UnHashableObject(1)))


320 321
if __name__ == '__main__':
    unittest.main()