ProcessGroupGloo.cc 17.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>

#ifdef _WIN32
#include <gloo/common/win.h>
#include <winsock2.h>
#include <ws2tcpip.h>
#else
#include <netdb.h>
#include <sys/socket.h>
#include <unistd.h>
#endif

#include <gloo/broadcast.h>
28 29
#include <gloo/reduce.h>
#include <gloo/scatter.h>
L
lilong12 已提交
30
#include "paddle/fluid/distributed/collective/Common.h"
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
#include "paddle/fluid/distributed/collective/ProcessGroupGloo.h"
#include "paddle/fluid/framework/fleet/gloo_wrapper.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace distributed {

#ifdef _WIN32
#define GENERATE_FUNC(type, func, ...)       \
  switch (type) {                            \
    case experimental::DataType::FLOAT32:    \
      func<float>(__VA_ARGS__);              \
      break;                                 \
    case experimental::DataType::FLOAT64:    \
      func<double>(__VA_ARGS__);             \
      break;                                 \
    case experimental::DataType::FLOAT16:    \
      func<gloo::float16>(__VA_ARGS__);      \
      break;                                 \
    case experimental::DataType::INT32:      \
      func<int32_t>(__VA_ARGS__);            \
      break;                                 \
    case experimental::DataType::INT64:      \
      func<int64_t>(__VA_ARGS__);            \
      break;                                 \
    default:                                 \
      VLOG(0) << "Error: Unknown DataType."; \
      exit(-1);                              \
  }

#define HOST_NAME_MAX 256

#else
#define GENERATE_FUNC(type, func, args...)   \
  switch (type) {                            \
    case experimental::DataType::FLOAT32:    \
      func<float>(args);                     \
      break;                                 \
    case experimental::DataType::FLOAT64:    \
      func<double>(args);                    \
      break;                                 \
    case experimental::DataType::FLOAT16:    \
      func<gloo::float16>(args);             \
      break;                                 \
    case experimental::DataType::INT32:      \
      func<int32_t>(args);                   \
      break;                                 \
    case experimental::DataType::INT64:      \
      func<int64_t>(args);                   \
      break;                                 \
    default:                                 \
      VLOG(0) << "Error: Unknown DataType."; \
      exit(-1);                              \
  }
#endif

typedef void (*reduce_func)(void*, const void*, const void*, size_t);

template <typename T>
reduce_func get_function(const ReduceOp& r) {
  switch (r) {
    case ReduceOp::SUM:
      return reduce_func(&::gloo::sum<T>);
    case ReduceOp::PRODUCT:
      return reduce_func(&::gloo::product<T>);
    case ReduceOp::MIN:
      return reduce_func(&::gloo::min<T>);
    case ReduceOp::MAX:
      return reduce_func(&::gloo::max<T>);
    case ReduceOp::AVG:
      VLOG(0) << "Error: Unsupported ReduceOp::AVG.";
      exit(-1);
  }

  VLOG(0) << "Error: Unknown ReduceOp.";
  exit(-1);
}

template <typename T>
L
lilong12 已提交
110 111
T* get_data(phi::DenseTensor& tensor) {  // NOLINT
  return reinterpret_cast<T*>(tensor.data());
112 113 114
}

template <typename T>
L
lilong12 已提交
115 116 117 118
std::vector<T*> get_multi_data(
    std::vector<phi::DenseTensor>& tensors) {  // NOLINT
  std::vector<T*> ret;
  ret.reserve(tensors.size());
119
  for (size_t i = 0; i < tensors.size(); i++) {
L
lilong12 已提交
120
    ret.push_back(get_data<T>(tensors[i]));
121 122 123 124 125
  }
  return ret;
}

template <typename T, typename P>
L
lilong12 已提交
126
void set_output(P& opts, phi::DenseTensor& tensor) {  // NOLINT
127 128 129 130
  opts.setOutput(get_data<T>(tensor), tensor.numel());
}

template <typename T, typename P>
L
lilong12 已提交
131
void set_input(P& opts, phi::DenseTensor& tensor) {  // NOLINT
132 133 134 135
  opts.setInput(get_data<T>(tensor), tensor.numel());
}

template <typename T, typename P>
L
lilong12 已提交
136 137
void set_outputs(P& opts,                                   // NOLINT
                 std::vector<phi::DenseTensor>& tensors) {  // NOLINT
138 139 140 141
  opts.setOutputs(get_multi_data<T>(tensors), tensors[0].numel());
}

template <typename T, typename P>
L
lilong12 已提交
142 143
void set_inputs(P& opts,                                   // NOLINT
                std::vector<phi::DenseTensor>& tensors) {  // NOLINT
144 145 146
  opts.setInputs(get_multi_data<T>(tensors), tensors[0].numel());
}

147
template <typename T, typename P>
L
lilong12 已提交
148 149
void set_inputs_for_scatter(P& opts,                   // NOLINT
                            phi::DenseTensor& tensor,  // NOLINT
150
                            int nranks) {
L
lilong12 已提交
151 152 153
  std::vector<T*> ret;
  ret.reserve(nranks);
  T* raw_pointer = reinterpret_cast<T*>(tensor.data());
154 155
  size_t offset = 0;
  for (int i = 0; i < nranks; i++) {
L
lilong12 已提交
156 157
    ret.push_back(raw_pointer + offset);
    offset += tensor.numel() / nranks;
158
  }
L
lilong12 已提交
159
  opts.setInputs(ret, tensor.numel() / nranks);
160 161
}

L
lilong12 已提交
162 163 164
ProcessGroupGloo::GlooTask::GlooTask(
    int rank, const std::vector<phi::DenseTensor>& inputs, CommType comm_type)
    : ProcessGroup::Task(rank, inputs, comm_type) {}
165

166
ProcessGroupGloo::ProcessGroupGloo(
L
lilong12 已提交
167
    const std::shared_ptr<distributed::Store>& store, int rank, int world_size,
168 169 170
    const platform::Place& place, int gid,
    const std::shared_ptr<GlooOptions> options)
    : ProcessGroup(rank, world_size, place, gid),
L
lilong12 已提交
171 172
      _tag(0),
      _store(new GlooStore(store)) {
173 174
  _context = std::make_shared<gloo::rendezvous::Context>(rank, world_size);
  auto prefix_store =
L
lilong12 已提交
175
      ::gloo::rendezvous::PrefixStore(std::to_string(gid), *_store);
176 177 178 179 180 181
  _context->connectFullMesh(prefix_store, options->device);
}

class BroadcastGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  BroadcastGlooTask(const std::shared_ptr<gloo::Context>& context,
L
lilong12 已提交
182 183 184
                    std::vector<phi::DenseTensor>& inputs,   // NOLINT
                    std::vector<phi::DenseTensor>& outputs,  // NOLINT
                    int rank, int root, uint32_t tag)
185 186 187 188
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::BROADCAST),
        _context(context),
        _root(root),
        _inputs(inputs),
L
lilong12 已提交
189
        _outputs(outputs),
190 191
        _tag(tag) {}

L
lilong12 已提交
192
  void Run() override { _do_broadcast(_inputs[0], _outputs[0]); }
193 194 195 196

 private:
  std::shared_ptr<gloo::Context> _context;
  const int _root;
L
lilong12 已提交
197 198
  std::vector<phi::DenseTensor> _inputs{};
  std::vector<phi::DenseTensor> _outputs{};
199 200
  const uint32_t _tag;

L
lilong12 已提交
201
  void _do_broadcast(phi::DenseTensor& in, phi::DenseTensor& out) {  // NOLINT
202
    gloo::BroadcastOptions opts(_context);
L
lilong12 已提交
203 204 205 206 207
    const auto& dtype = in.dtype();
    if (rank_ == _root) {
      GENERATE_FUNC(dtype, set_input, opts, in);
    }
    GENERATE_FUNC(dtype, set_output, opts, out);
208 209 210 211 212 213 214
    opts.setRoot(_root);
    opts.setTag(_tag);
    gloo::broadcast(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Broadcast(
L
lilong12 已提交
215 216
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs, const BroadcastOptions& opts) {
217 218 219 220
  auto root = opts.source_rank;
  std::unique_ptr<BroadcastGlooTask> task;
  auto tag = next_tag();
  auto context = get_context();
L
lilong12 已提交
221 222
  task = std::make_unique<BroadcastGlooTask>(context, inputs, outputs, rank_,
                                             root, tag);
223 224 225 226 227 228 229
  task->Run();
  return task;
}

class AllreduceGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  AllreduceGlooTask(int rank, const std::shared_ptr<gloo::Context>& context,
L
lilong12 已提交
230 231 232
                    std::vector<phi::DenseTensor>& inputs,   // NOLINT
                    std::vector<phi::DenseTensor>& outputs,  // NOLINT
                    ReduceOp reduce_op, uint32_t tag)
233 234 235
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::ALLREDUCE),
        _context(context),
        _inputs(inputs),
L
lilong12 已提交
236
        _outputs(outputs),
237 238 239
        _reduce_op(reduce_op),
        _tag(tag) {}

L
lilong12 已提交
240
  void Run() override { _do_allreduce(_inputs, _outputs); }
241 242 243

 private:
  std::shared_ptr<gloo::Context> _context;
L
lilong12 已提交
244 245
  std::vector<phi::DenseTensor> _inputs;
  std::vector<phi::DenseTensor> _outputs;
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
  const ReduceOp _reduce_op;
  uint32_t _tag;

  gloo::AllreduceOptions::Func _get_function(const experimental::DataType type,
                                             const ReduceOp op) {
    gloo::AllreduceOptions::Func fn;
    GENERATE_FUNC(type, _get_function_impl, fn, op);
    return fn;
  }

  template <typename T>
  void _get_function_impl(gloo::AllreduceOptions::Func& fn,  // NOLINT
                          const ReduceOp op) {
    fn = get_function<T>(op);
  }

L
lilong12 已提交
262 263 264
  void _do_allreduce(std::vector<phi::DenseTensor>& ins,     // NOLINT
                     std::vector<phi::DenseTensor>& outs) {  // NOLINT
    const auto& dtype = ins[0].dtype();
265
    gloo::AllreduceOptions opts(_context);
L
lilong12 已提交
266 267
    GENERATE_FUNC(dtype, set_inputs, opts, ins);
    GENERATE_FUNC(dtype, set_outputs, opts, outs);
268 269 270 271 272 273 274
    opts.setReduceFunction(_get_function(dtype, _reduce_op));
    opts.setTag(_tag);
    gloo::allreduce(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::AllReduce(
L
lilong12 已提交
275 276
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs, const AllreduceOptions& opts) {
277 278 279
  auto tag = next_tag();
  std::shared_ptr<GlooTask> task;
  auto context = get_context();
L
lilong12 已提交
280
  task = std::make_shared<AllreduceGlooTask>(rank_, context, inputs, outputs,
281 282 283 284 285
                                             opts.reduce_op, tag);
  task->Run();
  return task;
}

286 287 288
class BarrierGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  BarrierGlooTask(int rank, const std::shared_ptr<gloo::Context>& context)
L
lilong12 已提交
289
      : ProcessGroupGloo::GlooTask(rank, std::vector<phi::DenseTensor>{},
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
                                   CommType::BARRIER),
        _context(context) {}

  void Run() override { _do_barrier(); }

 private:
  std::shared_ptr<gloo::Context> _context;

  void _do_barrier() {
    gloo::BarrierOptions opts(_context);
    gloo::barrier(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Barrier(
    const BarrierOptions& opts) {
  std::shared_ptr<BarrierGlooTask> task;
  auto context = get_context();
  task = std::make_shared<BarrierGlooTask>(rank_, context);
  task->Run();
  return task;
}

class AllgatherGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  AllgatherGlooTask(int rank, const std::shared_ptr<gloo::Context>& context,
L
lilong12 已提交
316 317
                    std::vector<phi::DenseTensor>& inputs,   // NOLINT
                    std::vector<phi::DenseTensor>& outputs,  // NOLINT
318 319 320 321 322 323 324 325 326 327 328
                    uint32_t tag)
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::ALLGATHER),
        _context(context),
        _inputs(inputs),
        _outputs(outputs),
        _tag(tag) {}

  void Run() override { _do_allgather(_inputs, _outputs); }

 private:
  std::shared_ptr<gloo::Context> _context;
L
lilong12 已提交
329 330
  std::vector<phi::DenseTensor> _inputs;
  std::vector<phi::DenseTensor> _outputs;
331 332
  uint32_t _tag;

L
lilong12 已提交
333 334 335
  void _do_allgather(std::vector<phi::DenseTensor>& in,     // NOLINT
                     std::vector<phi::DenseTensor>& out) {  // NOLINT
    const auto& dtype = in[0].dtype();
336 337 338 339 340 341 342 343 344
    gloo::AllgatherOptions opts(_context);
    GENERATE_FUNC(dtype, set_input, opts, in[0]);
    GENERATE_FUNC(dtype, set_output, opts, out[0]);
    opts.setTag(_tag);
    gloo::allgather(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::AllGather(
L
lilong12 已提交
345 346
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors) {
347 348 349 350 351 352 353 354 355 356 357 358
  std::shared_ptr<AllgatherGlooTask> task;
  auto tag = next_tag();
  auto context = get_context();
  task = std::make_shared<AllgatherGlooTask>(rank_, context, in_tensors,
                                             out_tensors, tag);
  task->Run();
  return task;
}

class ReduceGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  ReduceGlooTask(int rank, const std::shared_ptr<gloo::Context>& context,
L
lilong12 已提交
359 360 361 362
                 std::vector<phi::DenseTensor>& inputs,   // NOLINT
                 std::vector<phi::DenseTensor>& outputs,  // NOLINT
                 ReduceOp reduce_op, int dst, uint32_t tag)
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::REDUCE),
363
        _context(context),
L
lilong12 已提交
364 365
        _inputs(inputs),
        _outputs(outputs),
366 367 368 369
        _reduce_op(reduce_op),
        _dst(dst),
        _tag(tag) {}

L
lilong12 已提交
370
  void Run() override { _do_reduce(_inputs, _outputs, _dst); }
371 372 373

 private:
  std::shared_ptr<gloo::Context> _context;
L
lilong12 已提交
374 375
  std::vector<phi::DenseTensor> _inputs;
  std::vector<phi::DenseTensor> _outputs;
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
  const ReduceOp _reduce_op;
  int _dst;
  uint32_t _tag;

  gloo::ReduceOptions::Func _get_function(const experimental::DataType type,
                                          const ReduceOp op) {
    gloo::ReduceOptions::Func fn;
    GENERATE_FUNC(type, _get_function_impl, fn, op);
    return fn;
  }

  template <typename T>
  void _get_function_impl(gloo::ReduceOptions::Func& fn,  // NOLINT
                          const ReduceOp op) {
    fn = get_function<T>(op);
  }

L
lilong12 已提交
393 394 395 396
  void _do_reduce(std::vector<phi::DenseTensor>& inputs,   // NOLINT
                  std::vector<phi::DenseTensor>& outputs,  // NOLINT
                  int dst) {
    const auto& dtype = inputs[0].dtype();
397
    gloo::ReduceOptions opts(_context);
L
lilong12 已提交
398 399
    GENERATE_FUNC(dtype, set_input, opts, inputs[0]);
    GENERATE_FUNC(dtype, set_output, opts, outputs[0]);
400 401 402 403 404 405 406 407
    opts.setReduceFunction(_get_function(dtype, _reduce_op));
    opts.setTag(_tag);
    opts.setRoot(dst);
    gloo::reduce(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Reduce(
L
lilong12 已提交
408 409
    std::vector<phi::DenseTensor>& inputs,
    std::vector<phi::DenseTensor>& outputs, const ReduceOptions& opts) {
410 411 412
  std::shared_ptr<ReduceGlooTask> task;
  auto tag = next_tag();
  auto context = get_context();
L
lilong12 已提交
413
  task = std::make_shared<ReduceGlooTask>(rank_, context, inputs, outputs,
414 415 416 417 418 419 420 421
                                          opts.reduce_op, opts.root_rank, tag);
  task->Run();
  return task;
}

class ScatterGlooTask : public ProcessGroupGloo::GlooTask {
 public:
  ScatterGlooTask(int rank, const std::shared_ptr<gloo::Context>& context,
L
lilong12 已提交
422 423
                  std::vector<phi::DenseTensor>& inputs,   // NOLINT
                  std::vector<phi::DenseTensor>& outputs,  // NOLINT
424 425 426 427 428 429 430 431 432 433 434 435 436
                  int src, int size, uint32_t tag)
      : ProcessGroupGloo::GlooTask(rank, inputs, CommType::SCATTER),
        _context(context),
        _inputs(inputs),
        _outputs(outputs),
        _src(src),
        _size(size),
        _tag(tag) {}

  void Run() override { _do_scatter(_inputs, _outputs, _src); }

 private:
  std::shared_ptr<gloo::Context> _context;
L
lilong12 已提交
437 438
  std::vector<phi::DenseTensor> _inputs;
  std::vector<phi::DenseTensor> _outputs;
439 440 441 442
  int _src;
  int _size;
  uint32_t _tag;

L
lilong12 已提交
443 444
  void _do_scatter(std::vector<phi::DenseTensor>& in,   // NOLINT
                   std::vector<phi::DenseTensor>& out,  // NOLINT
445
                   int src) {
L
lilong12 已提交
446
    const auto& dtype = in[0].dtype();
447 448
    gloo::ScatterOptions opts(_context);
    if (rank_ == src) {
L
lilong12 已提交
449
      GENERATE_FUNC(dtype, set_inputs_for_scatter, opts, in[0], _size);
450 451 452 453 454 455 456 457 458
    }
    GENERATE_FUNC(dtype, set_output, opts, out[0]);
    opts.setRoot(src);
    opts.setTag(_tag);
    gloo::scatter(opts);
  }
};

std::shared_ptr<ProcessGroup::Task> ProcessGroupGloo::Scatter(
L
lilong12 已提交
459 460
    std::vector<phi::DenseTensor>& in_tensors,
    std::vector<phi::DenseTensor>& out_tensors, const ScatterOptions& opts) {
461 462 463 464 465 466 467 468 469
  std::shared_ptr<ScatterGlooTask> task;
  auto tag = next_tag();
  auto context = get_context();
  task = std::make_shared<ScatterGlooTask>(
      rank_, context, in_tensors, out_tensors, opts.root_rank, size_, tag);
  task->Run();
  return task;
}

470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
std::shared_ptr<::gloo::transport::Device>
ProcessGroupGloo::createDeviceForInterface(const std::string& ifname) {
  ::gloo::transport::tcp::attr attr;
  attr.iface = ifname;
  return ::gloo::transport::tcp::CreateDevice(attr);
}

std::shared_ptr<::gloo::transport::Device>
ProcessGroupGloo::createDeviceForHostname(const std::string& hostname) {
  ::gloo::transport::tcp::attr attr;
  attr.hostname = hostname;
  return ::gloo::transport::tcp::CreateDevice(attr);
}

std::shared_ptr<::gloo::transport::Device>
ProcessGroupGloo::createDefaultDevice() {
  std::array<char, HOST_NAME_MAX> hostname{};
  auto ret = ::gethostname(hostname.data(), HOST_NAME_MAX);
  PADDLE_ENFORCE_EQ(ret, 0, platform::errors::Fatal(
                                "Get hostname error for createDefaultDevice."));
  ::addrinfo* result;
  result = tcputils::get_addr_info(hostname.data(), "", 0, AF_UNSPEC);
  ::addrinfo* cur;
  for (cur = result; cur != nullptr; cur = cur->ai_next) {
    SocketType socket =
        ::socket(cur->ai_family, cur->ai_socktype, cur->ai_protocol);
    if (socket == -1) {
      continue;
    }
    ret = ::bind(socket, cur->ai_addr, cur->ai_addrlen);
#ifdef _WIN32
    closesocket(socket);
#else
    close(socket);
#endif
    if (ret == -1) {
      continue;
    }
    break;
  }
  freeaddrinfo(result);
  if (cur != nullptr) {
    return createDeviceForHostname(hostname.data());
  }
  return createDeviceForHostname("127.0.0.1");
}

}  // namespace distributed
}  // namespace paddle