roll_op.cu 8.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

1
123malin 已提交
15 16
#pragma once
#include "paddle/fluid/framework/op_registry.h"
17
#include "paddle/fluid/operators/roll_op.h"
18
#include "paddle/fluid/platform/complex.h"
19
#include "paddle/fluid/platform/device/gpu/gpu_primitives.h"
20
#include "paddle/phi/core/utils/array.h"
1
123malin 已提交
21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

using platform::PADDLE_CUDA_NUM_THREADS;
using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

S
sunli 已提交
29 30
template <typename T, size_t Rank>
__global__ void RollCudaKernel(const T* input, T* output, int64_t N,
31 32 33
                               phi::Array<int64_t, Rank> shifts,
                               phi::Array<int64_t, Rank> strides,
                               phi::Array<int64_t, Rank> sizes) {
1
123malin 已提交
34 35 36 37
  int64_t idx = blockIdx.x * blockDim.x + threadIdx.x;
  if (idx >= N) {
    return;
  }
S
sunli 已提交
38

1
123malin 已提交
39
  int64_t output_idx = idx;
40
  int64_t new_dim_idx = 0;
S
sunli 已提交
41

42
#pragma unroll
S
sunli 已提交
43
  for (size_t i = 0; i < Rank; i++) {
44 45 46 47 48 49
    new_dim_idx = (idx / strides[i]) % sizes[i] + shifts[i];
    if (new_dim_idx >= sizes[i]) {
      output_idx += (shifts[i] - sizes[i]) * strides[i];
    } else {
      output_idx += shifts[i] * strides[i];
    }
1
123malin 已提交
50 51 52 53
  }
  output[output_idx] = input[idx];
}

S
sunli 已提交
54 55 56
template <typename T>
class RollKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
1
123malin 已提交
57 58 59 60 61
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
    std::vector<int64_t> shifts = context.Attr<std::vector<int64_t>>("shifts");
62 63 64 65 66 67 68 69 70 71
    if (context.HasInput("ShiftsTensor")) {
      const auto* shifts_tensor =
          context.Input<framework::Tensor>("ShiftsTensor");
      PADDLE_ENFORCE_EQ(
          shifts_tensor->dims().size(), 1,
          platform::errors::InvalidArgument(
              "The rank of ShiftsTensor is expected to be 1, got %s",
              shifts_tensor->dims().size()));
      shifts = GetDataFromTensor<int64_t>(shifts_tensor);
    }
1
123malin 已提交
72 73 74 75 76 77 78 79 80 81
    std::vector<int64_t> dims = context.Attr<std::vector<int64_t>>("axis");

    auto* in_data = in->data<T>();
    auto* out_data = out->mutable_data<T>(context.GetPlace());
    int64_t numel = in->numel();
    auto stream =
        context.template device_context<platform::CUDADeviceContext>().stream();

    size_t nums = shifts.size();
    auto input_dim = in->dims();
82
    auto stride_dim = phi::stride(input_dim);
1
123malin 已提交
83

S
sunli 已提交
84 85 86 87 88 89 90 91 92 93
    std::vector<int64_t> strides(nums), sizes(nums);
    if (dims.size() == 0) {
      strides[0] = 1;
      sizes[0] = numel;
      shifts[0] = (shifts[0] % numel + numel) % numel;
    } else {
      for (size_t i = 0; i < nums; i++) {
        int dim = dims[i] >= 0 ? dims[i] : dims[i] + input_dim.size();
        int64_t size = input_dim[dim];

94 95 96 97 98
        if (size != 0) {
          shifts[i] = (shifts[i] % size + size) % size;
          strides[i] = stride_dim[dim];
          sizes[i] = size;
        }
S
sunli 已提交
99 100 101 102 103
      }
    }

#define CALL_ROLL_CUDA_KERNEL(N)                                               \
  case N: {                                                                    \
104 105 106
    phi::Array<int64_t, N> _strides;                                           \
    phi::Array<int64_t, N> _shifts;                                            \
    phi::Array<int64_t, N> _sizes;                                             \
S
sunli 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    for (size_t idx = 0; idx < N; ++idx) {                                     \
      _strides[idx] = strides[idx];                                            \
      _shifts[idx] = shifts[idx];                                              \
      _sizes[idx] = sizes[idx];                                                \
    }                                                                          \
    RollCudaKernel<                                                            \
        T,                                                                     \
        N><<<(numel + PADDLE_CUDA_NUM_THREADS - 1) / PADDLE_CUDA_NUM_THREADS,  \
             PADDLE_CUDA_NUM_THREADS, 0, stream>>>(in_data, out_data, numel,   \
                                                   _shifts, _strides, _sizes); \
    break;                                                                     \
  }

    switch (nums) {
      CALL_ROLL_CUDA_KERNEL(1);
      CALL_ROLL_CUDA_KERNEL(2);
      CALL_ROLL_CUDA_KERNEL(3);
      CALL_ROLL_CUDA_KERNEL(4);
      CALL_ROLL_CUDA_KERNEL(5);
      CALL_ROLL_CUDA_KERNEL(6);
      CALL_ROLL_CUDA_KERNEL(7);
      CALL_ROLL_CUDA_KERNEL(8);
      CALL_ROLL_CUDA_KERNEL(9);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "shifts.size() should be less than 10, But received shifts.size() "
            "= %d",
            shifts.size()));
1
123malin 已提交
135 136 137 138
    }
  }
};

S
sunli 已提交
139 140 141
template <typename T>
class RollGradKernel<platform::CUDADeviceContext, T>
    : public framework::OpKernel<T> {
1
123malin 已提交
142 143 144 145 146
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* in = context.Input<LoDTensor>(framework::GradVarName("Out"));
    auto* out = context.Output<LoDTensor>(framework::GradVarName("X"));
    std::vector<int64_t> shifts = context.Attr<std::vector<int64_t>>("shifts");
147 148 149 150 151 152 153 154 155 156
    if (context.HasInput("ShiftsTensor")) {
      const auto* shifts_tensor =
          context.Input<framework::Tensor>("ShiftsTensor");
      PADDLE_ENFORCE_EQ(
          shifts_tensor->dims().size(), 1,
          platform::errors::InvalidArgument(
              "The rank of ShiftsTensor is expected to be 1, got %s",
              shifts_tensor->dims().size()));
      shifts = GetDataFromTensor<int64_t>(shifts_tensor);
    }
1
123malin 已提交
157 158 159 160 161 162 163 164 165
    std::vector<int64_t> dims = context.Attr<std::vector<int64_t>>("axis");

    auto* in_data = in->data<T>();
    auto* out_data = out->mutable_data<T>(context.GetPlace());
    int64_t numel = in->numel();
    auto stream =
        context.template device_context<platform::CUDADeviceContext>().stream();
    size_t nums = shifts.size();
    auto input_dim = in->dims();
166
    auto stride_dim = phi::stride(input_dim);
1
123malin 已提交
167

S
sunli 已提交
168 169 170 171 172 173 174 175 176
    std::vector<int64_t> strides(nums), sizes(nums);
    if (dims.size() == 0) {
      strides[0] = 1;
      sizes[0] = numel;
      shifts[0] = ((-shifts[0]) % numel + numel) % numel;
    } else {
      for (size_t i = 0; i < nums; i++) {
        int dim = dims[i] >= 0 ? dims[i] : dims[i] + input_dim.size();
        int64_t size = input_dim[dim];
177 178 179 180 181
        if (size != 0) {
          shifts[i] = ((-shifts[i]) % size + size) % size;
          strides[i] = stride_dim[dim];
          sizes[i] = size;
        }
S
sunli 已提交
182
      }
1
123malin 已提交
183 184
    }

S
sunli 已提交
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    switch (nums) {
      CALL_ROLL_CUDA_KERNEL(1);
      CALL_ROLL_CUDA_KERNEL(2);
      CALL_ROLL_CUDA_KERNEL(3);
      CALL_ROLL_CUDA_KERNEL(4);
      CALL_ROLL_CUDA_KERNEL(5);
      CALL_ROLL_CUDA_KERNEL(6);
      CALL_ROLL_CUDA_KERNEL(7);
      CALL_ROLL_CUDA_KERNEL(8);
      CALL_ROLL_CUDA_KERNEL(9);
      default:
        PADDLE_THROW(platform::errors::InvalidArgument(
            "shifts.size() should be less than 10, But received shifts.size() "
            "= %d",
            shifts.size()));
    }
1
123malin 已提交
201 202 203 204 205
  }
};

}  // namespace operators
}  // namespace paddle
206 207 208

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
S
sunli 已提交
209 210 211
    roll, ops::RollKernel<paddle::platform::CUDADeviceContext, float>,
    ops::RollKernel<paddle::platform::CUDADeviceContext, double>,
    ops::RollKernel<paddle::platform::CUDADeviceContext, int>,
212 213 214 215 216
    ops::RollKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::RollKernel<paddle::platform::CUDADeviceContext,
                    paddle::platform::complex<float>>,
    ops::RollKernel<paddle::platform::CUDADeviceContext,
                    paddle::platform::complex<double>>);
217
REGISTER_OP_CUDA_KERNEL(
S
sunli 已提交
218 219 220
    roll_grad, ops::RollGradKernel<paddle::platform::CUDADeviceContext, float>,
    ops::RollGradKernel<paddle::platform::CUDADeviceContext, double>,
    ops::RollGradKernel<paddle::platform::CUDADeviceContext, int>,
221 222 223 224 225
    ops::RollGradKernel<paddle::platform::CUDADeviceContext, int64_t>,
    ops::RollGradKernel<paddle::platform::CUDADeviceContext,
                        paddle::platform::complex<float>>,
    ops::RollGradKernel<paddle::platform::CUDADeviceContext,
                        paddle::platform::complex<double>>);