math_op_patch.py 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

from .. import core
18
from ..framework import Variable, convert_np_dtype_to_dtype_, _varbase_creator
19
from ..layers.layer_function_generator import OpProtoHolder
20
from ..layers import common_methods
21 22
from . import to_variable, no_grad

23 24 25
import numpy as np
import six

26 27 28 29 30 31 32 33
_supported_int_dtype_ = [
    core.VarDesc.VarType.UINT8,
    core.VarDesc.VarType.INT8,
    core.VarDesc.VarType.INT16,
    core.VarDesc.VarType.INT32,
    core.VarDesc.VarType.INT64,
]

34 35
_already_patch_varbase = False

36 37 38 39 40 41 42

def monkey_patch_math_varbase():
    """
    Similar to monkey_patch_variable.
    The difference is, in dygraph mode, use auto-generated op functions for better performance.
    """

43
    @no_grad()
44
    def create_tensor(value, dtype, shape):
45 46 47 48 49
        out = _varbase_creator(dtype=dtype)
        out = core.ops.fill_constant(out, 'dtype', dtype, 'shape', shape,
                                     'value', value, 'force_cpu', False)
        out.stop_gradient = True
        return out
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

    def create_scalar(value, dtype):
        return create_tensor(value, dtype, shape=[1])

    def astype(self, dtype):
        """
        **Notes**:
            **The variable must be a** :ref:`api_fluid_Tensor`

        Cast a variable to a specified data type.

        Args:

            self(Variable): The source variable

            dtype: The target data type

        Returns:
            Variable: Variable with new dtype

        Examples:
            In Static Graph Mode:

            .. code-block:: python

                import paddle.fluid as fluid

                startup_prog = fluid.Program()
                main_prog = fluid.Program()
                with fluid.program_guard(startup_prog, main_prog):
                    original_variable = fluid.data(name = "new_variable", shape=[2,2], dtype='float32')
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}".format(new_variable.dtype))

            In Dygraph Mode:

            .. code-block:: python

                import paddle.fluid as fluid
                import numpy as np

                x = np.ones([2, 2], np.float32)
                with fluid.dygraph.guard():
                    original_variable = fluid.dygraph.to_variable(x)
                    print("original var's dtype is: {}, numpy dtype is {}".format(original_variable.dtype, original_variable.numpy().dtype))
                    new_variable = original_variable.astype('int64')
                    print("new var's dtype is: {}, numpy dtype is {}".format(new_variable.dtype, new_variable.numpy().dtype))

        """
99 100 101
        if not isinstance(dtype, core.VarDesc.VarType):
            dtype = convert_np_dtype_to_dtype_(dtype)
        return core.ops.cast(self, 'in_dtype', self.dtype, 'out_dtype', dtype)
102 103

    def _scalar_elementwise_op_(var, scale, bias):
104
        return core.ops.scale(var, 'scale', scale, 'bias', bias)
105

106 107 108
    def _neg_(var):
        return _scalar_elementwise_op_(var, -1.0, 0.0)

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
    def _float_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to float."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return float(var.numpy().flatten()[0])

    def _long_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to long."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        if six.PY2:
            return long(var.numpy().flatten()[0])
        else:
            return int(var.numpy().flatten()[0])

    def _int_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to int."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        return int(var.numpy().flatten()[0])

    def _len_(var):
        return var.shape[0]

    def _index_(var):
        numel = np.prod(var.shape)
        assert numel == 1, "only one element variable can be converted to python index."
        tensor = var.value().get_tensor()
        assert tensor._is_initialized(), "variable's tensor is not initialized"
        if six.PY2:
            return long(var.numpy().flatten()[0])
        else:
            return int(var.numpy().flatten()[0])

146 147 148 149 150
    @property
    def _ndim_(var):
        return len(var.shape)

    def _scalar_add_(var, value):
151 152
        return _scalar_elementwise_op_(var, 1.0, value)

153
    def _scalar_sub_(var, value):
154 155
        return _scalar_elementwise_op_(var, 1.0, -value)

156
    def _scalar_rsub_(var, value):
157 158
        return _scalar_elementwise_op_(var, -1.0, value)

159
    def _scalar_mul_(var, value):
160 161
        return _scalar_elementwise_op_(var, value, 0.0)

162
    def _scalar_div_(var, value):
163 164
        return _scalar_elementwise_op_(var, 1.0 / value, 0.0)

165 166 167 168 169
    # for binary operator such as elementwise, compare
    def _binary_creator_(method_name,
                         op_type,
                         reverse=False,
                         scalar_method=None):
170 171 172 173 174 175 176 177 178 179 180 181 182 183
        def __impl__(self, other_var):
            # FIXME(zjl): elementwise_div between integers cannot be converted to scale,
            # which may lose accuracy. This is a hot fix for release 1.6.
            if scalar_method is not None and not (
                    op_type == 'elementwise_div' and
                    self.dtype in _supported_int_dtype_):
                if isinstance(other_var, float):
                    if self.dtype in _supported_int_dtype_:
                        assert other_var == int(other_var), \
                            "float value {} cannot convert to integer".format(other_var)
                    return scalar_method(self, other_var)
                elif isinstance(other_var, int):
                    return scalar_method(self, float(other_var))

184
            lhs_dtype = self.dtype
185 186 187 188 189 190 191 192 193

            if not isinstance(other_var, core.VarBase):
                if reverse:
                    other_var = create_tensor(
                        other_var, dtype=lhs_dtype, shape=self.shape)
                else:
                    # add fill_op 
                    other_var = create_scalar(value=other_var, dtype=lhs_dtype)

194
            rhs_dtype = other_var.dtype
195 196 197 198 199 200 201 202
            if lhs_dtype != rhs_dtype:
                other_var = astype(other_var, lhs_dtype)
            if reverse:
                tmp = self
                self = other_var
                other_var = tmp

            axis = -1
203
            math_op = getattr(core.ops, op_type)
L
Leo Chen 已提交
204
            return math_op(self, other_var, 'axis', axis)
205 206 207 208 209 210

        comment = OpProtoHolder.instance().get_op_proto(op_type).comment

        __impl__.__doc__ = """
        {0}
        Args:
211 212
            self(Tensor): left hand Tensor
            other_var(Tensor|float|int): right hand Tensor
213 214

        Returns:
215
            Tensor
216 217 218 219
        """.format(comment)
        __impl__.__name__ = method_name
        return __impl__

220 221 222 223 224 225
    # Todo(zhouwei): implement dygraph template to adapt to any function, receive('op_type', 'arg_template')
    #  Such as _method_creator_('addmm', 'x, y, alpha=1.0, beta=1.0, name=None'). It can reduce call time.
    def _method_creator_(op_type, arg_template=None):
        def __impl__(self):
            op = getattr(core.ops, op_type)
            return op(self)
H
hong 已提交
226

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        __impl__.__doc__ = """

        See paddle.{}""".format(op_type)
        __impl__.__name__ = op_type

        return __impl__

    varbase_methods = [
        # Type1: From custom fun or lambda
        ##   b=-a
        ('__neg__', _neg_),
        ('__float__', _float_),
        ('__long__', _long_),
        ('__int__', _int_),
        ('__len__', _len_),
        ('__index__', _index_),
        ('astype', astype),
        ('dim', lambda x: len(x.shape)),
        ('ndimension', lambda x: len(x.shape)),
        ('ndim', _ndim_),
        ('size', lambda x: x.shape),
        # Type2: From Template that create core.ops automatically. It's recommended.
        ('__add__',
         _binary_creator_('__add__', 'elementwise_add', False, _scalar_add_)),
        ##  a+b == b+a. Do not need to reverse explicitly
        ('__radd__',
         _binary_creator_('__radd__', 'elementwise_add', False, _scalar_add_)),
        ('__sub__', _binary_creator_('__sub__', 'elementwise_sub', False,
                                     _scalar_sub_)),
        ('__rsub__', _binary_creator_('__rsub__', 'elementwise_sub', True,
                                      _scalar_rsub_)),
        ('__mul__', _binary_creator_('__mul__', 'elementwise_mul', False,
                                     _scalar_mul_)),
        ## a*b == b*a. Do not need to reverse explicitly
        ('__rmul__',
         _binary_creator_('__rmul__', 'elementwise_mul', False, _scalar_mul_)),
        ('__div__', _binary_creator_('__div__', 'elementwise_div', False,
                                     _scalar_div_)),
        ('__truediv__', _binary_creator_('__truediv__', 'elementwise_div',
                                         False, _scalar_div_)),
        ('__rdiv__', _binary_creator_('__rdiv__', 'elementwise_div', True,
                                      None)),
        ('__rtruediv__', _binary_creator_('rtruediv__', 'elementwise_div', True,
                                          None)),
        ('__pow__', _binary_creator_('__pow__', 'elementwise_pow', False,
                                     None)),
        ('__rpow__', _binary_creator_('__rpow__', 'elementwise_pow', True,
                                      None)),
        ('__floordiv__', _binary_creator_('__floordiv__',
                                          'elementwise_floordiv', False, None)),
        ('__mod__', _binary_creator_('__mod__', 'elementwise_mod', False,
                                     None)),
        ## for logical compare
        ('__eq__', _binary_creator_('__eq__', 'equal', False, None)),
        ('__ne__', _binary_creator_('__ne__', 'not_equal', False, None)),
        ('__lt__', _binary_creator_('__lt__', 'less_than', False, None)),
        ('__le__', _binary_creator_('__le__', 'less_equal', False, None)),
        ('__gt__', _binary_creator_('__gt__', 'greater_than', False, None)),
        ('__ge__', _binary_creator_('__ge__', 'greater_equal', False, None)),
        ('__array_ufunc__', None),
        ('sigmoid', _method_creator_('sigmoid', 'name=None')),
        ('logsigmoid', _method_creator_('logsigmoid', 'name=None')),
        ('exp', _method_creator_('exp', 'name=None')),
        ('tanh', _method_creator_('tanh', 'name=None')),
        ('atan', _method_creator_('atan', 'name=None')),
        ('tanh_shrink', _method_creator_('tanh_shrink', 'name=None')),
        ('sqrt', _method_creator_('sqrt', 'name=None')),
        ('rsqrt', _method_creator_('rsqrt', 'name=None')),
        ('abs', _method_creator_('abs', 'name=None')),
        ('ceil', _method_creator_('ceil', 'name=None')),
        ('floor', _method_creator_('floor', 'name=None')),
        ('cos', _method_creator_('cos', 'name=None')),
        ('acos', _method_creator_('acos', 'name=None')),
        ('asin', _method_creator_('asin', 'name=None')),
        ('sin', _method_creator_('sin', 'name=None')),
        ('sinh', _method_creator_('sinh', 'name=None')),
        ('cosh', _method_creator_('cosh', 'name=None')),
        ('round', _method_creator_('round', 'name=None')),
        ('reciprocal', _method_creator_('reciprocal', 'name=None')),
        ('square', _method_creator_('square', 'name=None')),
        ('softplus', _method_creator_('softplus', 'name=None')),
        ('softsign', _method_creator_('softsign', 'name=None')),
        # Type3: Form module 'paddle.tensor' defaultly.
        #   It's not a goodway, because it will increase call time.
    ]

    global _already_patch_varbase
    if not _already_patch_varbase:
        for method in varbase_methods:
            method_name = method[0]
            method_impl = method[1]
            setattr(core.VarBase, method_name, method_impl)
    else:
        import paddle.tensor
        for method_name in common_methods:
            if hasattr(core.VarBase, method_name): continue
            method_impl = getattr(paddle.tensor, method_name, None)
            if method_impl: setattr(core.VarBase, method_name, method_impl)

    _already_patch_varbase = True