test_recurrent_op.py 21.3 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

Y
Yan Chunwei 已提交
15
import unittest
16
import paddle
C
chengduo 已提交
17
import paddle.fluid as fluid
18
import paddle.fluid.layers as layers
19 20 21 22
import numpy as np
import paddle.fluid.core as core

from paddle.fluid import ParamAttr
23 24 25
from paddle.fluid.framework import Program, grad_var_name
from paddle.fluid.executor import Executor
from paddle.fluid.backward import append_backward
S
fix res  
superjom 已提交
26

27 28
np.random.seed(123)

S
fix res  
superjom 已提交
29

30
class PyRNNBase:
Y
Yu Yang 已提交
31 32 33
    def __init__(self, input_shape, output_shape):
        self.x = np.ones(shape=input_shape).astype("float32")
        self.y = np.zeros(shape=output_shape).astype("float32")
S
superjom 已提交
34

35 36
    def step(self, step_id, x):
        raise NotImplementedError
S
superjom 已提交
37 38 39

    def forward(self):
        for step_id in range(self.x.shape[0]):
Y
Yu Yang 已提交
40 41
            self.step(step_id, self.x[step_id])
        return np.array([np.mean(self.y)])
S
superjom 已提交
42 43 44 45

    def segment_inputs(self):
        return [self.x[i] for i in range(self.x.shape[0])]

Y
Yu Yang 已提交
46 47 48

class PySimpleRNN1(PyRNNBase):
    def __init__(self, input_shape, output_shape):
49
        super().__init__(input_shape, output_shape)
Y
Yu Yang 已提交
50 51

        seq_len, batch_size, input_dim = input_shape
52 53 54
        self.h_boot = np.random.normal(size=(batch_size, input_dim)).astype(
            "float32"
        )
Y
Yu Yang 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70

        self.scale = 1.0 / 2.0
        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")

    def step(self, step_id, x):
        if step_id == 0:
            pre_mem = self.h_boot
        else:
            pre_mem = self.mems[step_id - 1]
        self.mems[step_id] = (pre_mem + x) * self.scale
        self.y[step_id] = self.mems[step_id]


class PySimpleRNN2(PyRNNBase):
    def __init__(self, input_shape, output_shape):
71
        super().__init__(input_shape, output_shape)
Y
Yu Yang 已提交
72 73

        seq_len, batch_size, input_dim = input_shape
74 75
        self.W = np.ones(shape=(input_dim, input_dim)).astype("float32")
        self.U = np.zeros(shape=(input_dim, input_dim)).astype("float32")
Y
Yu Yang 已提交
76 77 78 79
        self.h_boot = np.ones(shape=(batch_size, input_dim)).astype("float32")

        men_dim = (seq_len, batch_size, input_dim)
        self.mems = np.zeros(shape=men_dim).astype("float32")
S
superjom 已提交
80 81 82

    def step(self, step_id, x):
        if step_id > 0:
S
fix res  
superjom 已提交
83
            pre_mem = self.mems[step_id - 1]
S
superjom 已提交
84 85
        else:
            pre_mem = self.h_boot
Q
qiaolongfei 已提交
86 87
        xW = np.matmul(x, self.W).astype("float32")
        hU = np.matmul(pre_mem, self.U).astype("float32")
S
superjom 已提交
88

Y
Yu Yang 已提交
89
        def py_sigmoid(x):
90
            return 1.0 / (1.0 + np.exp(-x))
S
fix res  
superjom 已提交
91

Y
Yu Yang 已提交
92 93
        self.mems[step_id] = py_sigmoid(xW + hU)
        self.y[step_id] = self.mems[step_id]
Y
Yan Chunwei 已提交
94 95


Y
Yu Yang 已提交
96 97 98
def create_tensor(np_data, place):
    tensor = core.LoDTensor()
    tensor.set(np_data, place)
Y
Yan Chunwei 已提交
99 100 101
    return tensor


Y
Yu Yang 已提交
102
class RecurrentOpTest1(unittest.TestCase):
Y
Yan Chunwei 已提交
103 104 105
    '''
    Test RNNOp
    equation:
Y
Yu Yang 已提交
106
        h_t = ( x_t + h_{t-1} ) / scale
Y
Yan Chunwei 已提交
107 108 109 110 111
    vars:
        - x
    memories:
        - h
    outputs:
Y
Yu Yang 已提交
112
        - h
Y
Yan Chunwei 已提交
113 114
    '''

Y
Yu Yang 已提交
115 116 117 118
    input_dim = 2
    batch_size = 1
    sent_len = 1

119 120 121
    def setup_program(self):
        self.main_program = Program()
        self.startup_program = Program()
Y
Yu Yang 已提交
122
        self.place = core.CPUPlace()
Y
Yan Chunwei 已提交
123

S
superjom 已提交
124
    def setUp(self):
125
        self.setup_program()
126 127
        self.feed_data_field = {"x", "h_boot"}
        self.grad_data_field = self.feed_data_field
Y
Yan Chunwei 已提交
128

Y
Yu Yang 已提交
129 130 131 132
        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN1(self.input_shape, self.output_shape)

C
chengduo 已提交
133
        with fluid.program_guard(self.main_program, self.startup_program):
134
            self.output = paddle.mean(self.create_rnn_op())
Y
Yan Chunwei 已提交
135 136

    def create_rnn_op(self):
137 138 139 140 141 142
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
        )
Y
Yu Yang 已提交
143
        x.stop_gradient = False
144 145 146
        h_boot = layers.data(
            shape=[self.input_dim], dtype='float32', name='h_boot'
        )
Y
Yu Yang 已提交
147
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
148

C
chengduo 已提交
149
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
150 151 152 153
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

2
201716010711 已提交
154
            h = paddle.scale(
155 156 157
                x=layers.elementwise_add(x=h_pre, y=x_t),
                scale=self.py_rnn.scale,
            )
Y
Yu Yang 已提交
158 159 160 161 162 163 164 165 166

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

    def forward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
167
            for x in self.feed_data_field
Y
Yu Yang 已提交
168 169
        }
        exe = Executor(self.place)
170 171 172
        out = exe.run(
            self.main_program, feed=self.feed_map, fetch_list=[self.output]
        )
Y
Yu Yang 已提交
173

D
dzhwinter 已提交
174
        return out[0]
Y
Yu Yang 已提交
175 176 177 178

    def backward(self):
        self.feed_map = {
            x: create_tensor(getattr(self.py_rnn, x), self.place)
179
            for x in self.feed_data_field
Y
Yu Yang 已提交
180 181
        }
        fetch_list = [
Q
qiaolongfei 已提交
182
            self.main_program.global_block().var(grad_var_name(x))
183
            for x in self.grad_data_field
Y
Yu Yang 已提交
184 185 186
        ]

        exe = Executor(self.place)
187 188 189 190 191 192
        return exe.run(
            self.main_program,
            feed=self.feed_map,
            fetch_list=fetch_list,
            return_numpy=False,
        )
Y
Yu Yang 已提交
193

194
    def test_backward(self, rtol=0.01):
Y
Yu Yang 已提交
195 196
        self.check_forward()

C
chengduo 已提交
197 198
        with fluid.program_guard(self.main_program, self.startup_program):
            append_backward(self.output)
Y
Yu Yang 已提交
199 200 201 202

        ana_grad = [np.array(x) for x in self.backward()]

        num_grad = self.get_numerical_gradient()
203
        for idx, name in enumerate(self.grad_data_field):
Y
Yu Yang 已提交
204
            self.assertEqual(num_grad[idx].shape, ana_grad[idx].shape)
205 206 207 208 209
            np.testing.assert_allclose(
                num_grad[idx],
                ana_grad[idx],
                rtol=rtol,
                atol=1e-8,
210 211 212 213 214 215 216 217 218 219 220 221
                err_msg='num_grad ('
                + name
                + ') has diff at '
                + str(self.place)
                + '\nExpect '
                + str(num_grad[idx])
                + '\n'
                + 'But Got'
                + str(ana_grad[idx])
                + ' in class '
                + self.__class__.__name__,
            )
Y
Yu Yang 已提交
222 223

    def check_forward(self):
S
superjom 已提交
224 225 226
        pd_output = self.forward()
        py_output = self.py_rnn.forward()
        self.assertEqual(pd_output.shape, py_output.shape)
227
        np.testing.assert_allclose(pd_output, py_output, rtol=0.01)
Y
Yan Chunwei 已提交
228

Y
Yu Yang 已提交
229 230
    def get_numerical_gradient(self, delta=0.005):
        dloss_dout = 1.0
231
        feed_list = [getattr(self.py_rnn, x) for x in self.grad_data_field]
Y
Yu Yang 已提交
232 233 234 235 236 237
        grad_list = [np.zeros_like(x) for x in feed_list]
        for feed, grad in zip(feed_list, grad_list):
            for f, g in np.nditer([feed, grad], op_flags=['readwrite']):
                o = float(f)
                f[...] = o + delta
                y_pos = self.forward()
S
fix res  
superjom 已提交
238

Y
Yu Yang 已提交
239 240 241 242 243 244 245 246 247 248 249
                f[...] = o - delta
                y_neg = self.forward()

                f[...] = o
                dout_dfeed = (y_pos - y_neg) / (delta * 2)
                g[...] = dout_dfeed[0]

        return grad_list


class RecurrentOpTest2(RecurrentOpTest1):
250
    r'''
Y
Yu Yang 已提交
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    Test RNNOp
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
        - U
    vars:
        - x
    memories:
        - h
    outputs:
       - h
    '''

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
270
        self.setup_program()
Y
Yu Yang 已提交
271

272 273
        self.feed_data_field = {"x", "h_boot", "W", "U"}
        self.grad_data_field = self.feed_data_field
Y
Yu Yang 已提交
274 275 276 277 278

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

C
chengduo 已提交
279
        with fluid.program_guard(self.main_program, self.startup_program):
280
            self.output = paddle.mean(self.create_rnn_op())
Y
Yu Yang 已提交
281 282

    def create_rnn_op(self):
283 284 285 286 287 288
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
        )
Y
Yu Yang 已提交
289
        x.stop_gradient = False
290 291 292
        h_boot = layers.data(
            shape=[self.input_dim], dtype='float32', name='h_boot'
        )
Y
Yu Yang 已提交
293
        h_boot.stop_gradient = False
Y
Yu Yang 已提交
294

C
chengduo 已提交
295
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
296 297 298 299
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)
            x_t = rnn.step_input(x)

300 301 302 303 304
            temp_l = layers.fc(
                input=x_t,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name='W',
305 306 307 308
                    initializer=fluid.initializer.ConstantInitializer(1.0),
                ),
                bias_attr=False,
            )
309 310 311 312 313
            temp_r = layers.fc(
                input=h_pre,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name='U',
314 315 316 317
                    initializer=fluid.initializer.ConstantInitializer(0.0),
                ),
                bias_attr=False,
            )
318

319 320 321
            h = paddle.nn.functional.sigmoid(
                x=layers.elementwise_add(x=temp_l, y=temp_r)
            )
Y
Yu Yang 已提交
322 323 324 325 326 327

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()

C
chengduo 已提交
328
    def test_backward(self):
329
        super().test_backward(rtol=0.01)
C
chengduo 已提交
330

Y
Yu Yang 已提交
331

332
class RecurrentOpMultipleMemoryTest(RecurrentOpTest1):
Y
Yu Yang 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    '''
    Test RNNOp with two memories
    equation:
        h_1 = h_pre_1
        h_2 = h_pre_2
        y = h_1 + h_2
    vars:
        - x
    memories:
        - h_1, h_2
    outputs:
       - y
    '''

    class PySimpleRNN3(PyRNNBase):
        def __init__(self, input_shape, output_shape):
349
            super().__init__(input_shape, output_shape)
Y
Yu Yang 已提交
350 351

            seq_len, batch_size, input_dim = input_shape
352 353 354 355 356 357
            self.h_boot1 = np.random.normal(
                size=(batch_size, input_dim)
            ).astype("float32")
            self.h_boot2 = np.random.normal(
                size=(batch_size, input_dim)
            ).astype("float32")
Y
Yu Yang 已提交
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378

            men_dim = (seq_len, batch_size, input_dim)
            self.mems1 = np.zeros(shape=men_dim).astype("float32")
            self.mems2 = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem1 = self.h_boot1
                pre_mem2 = self.h_boot2
            else:
                pre_mem1 = self.mems1[step_id - 1]
                pre_mem2 = self.mems2[step_id - 1]
            self.mems1[step_id] = pre_mem1
            self.mems2[step_id] = pre_mem2
            self.y[step_id] = self.mems1[step_id] + self.mems2[step_id] + x

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
379
        self.setup_program()
Y
Yu Yang 已提交
380

381 382
        self.feed_data_field = {"x", "h_boot1", "h_boot2"}
        self.grad_data_field = self.feed_data_field
Y
Yu Yang 已提交
383 384 385

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
386
        self.py_rnn = RecurrentOpMultipleMemoryTest.PySimpleRNN3(
387 388
            self.input_shape, self.output_shape
        )
Y
Yu Yang 已提交
389

C
chengduo 已提交
390
        with fluid.program_guard(self.main_program, self.startup_program):
391
            self.output = paddle.mean(self.create_rnn_op())
Y
Yu Yang 已提交
392 393

    def create_rnn_op(self):
394 395 396 397 398 399
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
        )
Y
Yu Yang 已提交
400
        x.stop_gradient = False
401 402 403 404 405 406
        h_boot1 = layers.data(
            shape=[self.batch_size, self.input_dim],
            dtype='float32',
            name='h_boot1',
            append_batch_size=False,
        )
Y
Yu Yang 已提交
407
        h_boot1.stop_gradient = False
408 409 410 411 412 413
        h_boot2 = layers.data(
            shape=[self.batch_size, self.input_dim],
            dtype='float32',
            name='h_boot2',
            append_batch_size=False,
        )
Y
Yu Yang 已提交
414
        h_boot2.stop_gradient = False
Y
Yu Yang 已提交
415

C
chengduo 已提交
416
        rnn = layers.StaticRNN()
Y
Yu Yang 已提交
417 418 419 420 421
        with rnn.step():
            h_pre1 = rnn.memory(init=h_boot1)
            h_pre2 = rnn.memory(init=h_boot2)
            x_t = rnn.step_input(x)

2
201716010711 已提交
422 423
            mem1 = paddle.scale(x=h_pre1, scale=1.0)
            mem2 = paddle.scale(x=h_pre2, scale=1.0)
C
chengduo 已提交
424
            out = layers.sums(input=[mem1, x_t, mem2])
Y
Yu Yang 已提交
425 426 427 428 429 430

            rnn.update_memory(h_pre1, mem1)
            rnn.update_memory(h_pre2, mem2)
            rnn.output(out)

        return rnn()
S
init  
superjom 已提交
431 432


433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
class RecurrentOpNoMemBootTest(RecurrentOpTest1):
    '''
    Test RNNOp with two memories
    equation:
        mem = x + mem_pre
        y = mem
    vars:
        - x
    memories:
        - mem
    outputs:
       - y
    '''

    class PySimpleRNN4(PyRNNBase):
        def __init__(self, input_shape, output_shape):
449
            super().__init__(input_shape, output_shape)
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467
            men_dim = input_shape
            self.mems = np.zeros(shape=men_dim).astype("float32")

        def step(self, step_id, x):
            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            self.mems[step_id] = pre_mem + x
            self.y[step_id] = self.mems[step_id]

    input_dim = 1
    batch_size = 1
    sent_len = 2

    def setUp(self):
        self.setup_program()

468 469
        self.feed_data_field = {"x"}
        self.grad_data_field = self.feed_data_field
470 471 472

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
473
        self.py_rnn = RecurrentOpNoMemBootTest.PySimpleRNN4(
474 475
            self.input_shape, self.output_shape
        )
C
chengduo 已提交
476 477

        with fluid.program_guard(self.main_program, self.startup_program):
478
            self.output = paddle.mean(self.create_rnn_op())
479 480

    def create_rnn_op(self):
481 482 483 484 485 486
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
        )
487 488
        x.stop_gradient = False

C
chengduo 已提交
489
        rnn = layers.StaticRNN()
490 491 492
        with rnn.step():
            mem_pre = rnn.memory(shape=[-1, self.input_dim], batch_ref=x)
            x_t = rnn.step_input(x)
C
chengduo 已提交
493
            mem = layers.elementwise_add(x=mem_pre, y=x_t)
494 495 496 497 498 499
            rnn.update_memory(mem_pre, mem)
            rnn.output(mem)

        return rnn()


500
class RecurrentOpSubBlockTest(RecurrentOpTest1):
501
    r'''
502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
    Test RNNOp with subblock variable
    equation:
        y_ = emb * w1
        h_t = \concat([x, h_{t-1}])
        h_t = h_t * w2
        h_t = \\unsqueeze(h_t, 1)
        h_t = \dot_attention(h_t, y_)
        h_t = \squeeze(h_t, 1)
        y = h_t
    vars:
        - x
        - w1
        - w2
    memories:
        - h
    outputs:
       - y
    '''

    class PySimpleRNN5(PyRNNBase):
        def __init__(self, input_shape, output_shape):
523
            super().__init__(input_shape, output_shape)
524 525

            seq_len, batch_size, input_dim = input_shape
526 527 528 529 530 531 532 533 534 535
            self.w1 = np.random.uniform(
                -0.1, 0.1, size=(input_dim, input_dim)
            ).astype("float32")
            self.w2 = np.random.uniform(
                -0.1, 0.1, size=(input_dim * 2, input_dim)
            ).astype("float32")

            self.emb = np.random.uniform(
                -0.1, 0.1, size=(seq_len, batch_size, input_dim)
            ).astype("float32")
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571

            men_dim = (seq_len, batch_size, input_dim)
            self.mems = np.zeros(shape=men_dim).astype("float32")
            self.oy = np.matmul(self.emb, self.w1)

        def step(self, step_id, x):
            def dot_attention(query, memory):
                attn = np.matmul(query, memory.transpose((0, 2, 1)))
                weight = softmax(attn)
                weight_memory = np.matmul(weight, memory)
                return weight_memory, weight

            def softmax(x):
                return np.exp(x) / sum(np.exp(x))

            if step_id == 0:
                pre_mem = np.zeros_like(x)
            else:
                pre_mem = self.mems[step_id - 1]
            concat_in = np.concatenate([x, pre_mem], 1)
            new_mem = np.matmul(concat_in, self.w2)

            new_mem = np.expand_dims(new_mem, 1)
            new_mem, _ = dot_attention(new_mem, self.oy)
            new_mem = np.squeeze(new_mem, 1)

            self.mems[step_id] = new_mem
            self.y[step_id] = self.mems[step_id]

    input_dim = 2
    batch_size = 3
    sent_len = 3

    def setUp(self):
        self.setup_program()

572 573
        self.feed_data_field = {"x", "emb", "w1", "w2"}
        self.grad_data_field = self.feed_data_field
574 575 576

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
577
        self.py_rnn = RecurrentOpSubBlockTest.PySimpleRNN5(
578 579
            self.input_shape, self.output_shape
        )
580 581 582

        with fluid.program_guard(self.main_program, self.startup_program):
            rnn_out = self.create_rnn_op()
583
            self.output = paddle.mean(rnn_out)
584 585

    def create_rnn_op(self):
586 587 588 589 590 591
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
            name='x',
            append_batch_size=False,
        )
592 593 594 595 596 597
        x.stop_gradient = False

        emb = layers.data(
            name='emb',
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype='float32',
598 599
            append_batch_size=False,
        )
600 601
        emb.stop_gradient = False

602 603 604 605 606 607
        w1 = layers.data(
            shape=[self.input_dim, self.input_dim],
            dtype='float32',
            name='w1',
            append_batch_size=False,
        )
608
        w1.stop_gradient = False
609 610 611 612 613 614
        w2 = layers.data(
            shape=[self.input_dim * 2, self.input_dim],
            dtype='float32',
            name='w2',
            append_batch_size=False,
        )
615 616 617 618 619 620 621 622 623 624 625 626 627
        w2.stop_gradient = False

        rnn = layers.StaticRNN()

        def dot_attention(query, memory):
            attn = layers.matmul(query, memory, transpose_y=True)
            weight = layers.softmax(attn)
            weight_memory = layers.matmul(weight, memory)

            return weight_memory, weight

        y = layers.matmul(emb, w1)
        with rnn.step():
628 629 630 631 632
            pre_h = rnn.memory(
                shape=(self.sent_len, self.input_dim),
                batch_ref=x,
                init_value=0.0,
            )
633 634 635 636 637 638 639 640 641 642 643 644 645
            step_in = rnn.step_input(x)
            concat_in = layers.concat([step_in, pre_h], 1)
            new_h = layers.matmul(concat_in, w2)
            new_h = layers.unsqueeze(new_h, [1])
            new_h, _ = dot_attention(new_h, y)
            new_h = layers.squeeze(new_h, [1])

            rnn.update_memory(pre_h, new_h)
            rnn.step_output(new_h)

        return rnn()


646
class RecurrentOpStopGradientTest(RecurrentOpTest1):
647
    r"""
648 649 650 651 652
    Test RNNOp with stop_gradient = True
    equation:
        h_t = \sigma (W x_t + U h_{t-1})
    weights:
        - W
653
        - U
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
    vars:
        - x
    memories:
        - h
    output:
        - h
    """

    input_dim = 2
    batch_size = 10
    sent_len = 2

    def setUp(self):
        self.setup_program()
        self.feed_data_field = {"x", "h_boot", "W", "U"}
        self.grad_data_field = {"x", "W", "U"}

        self.input_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.output_shape = (self.sent_len, self.batch_size, self.input_dim)
        self.py_rnn = PySimpleRNN2(self.input_shape, self.output_shape)

        with fluid.program_guard(self.main_program, self.startup_program):
676
            self.output = paddle.mean(self.create_rnn_op())
677 678

    def create_rnn_op(self):
679 680 681 682 683 684
        x = layers.data(
            shape=[self.sent_len, self.batch_size, self.input_dim],
            dtype="float32",
            name="x",
            append_batch_size=False,
        )
685
        x.stop_gradient = False
686 687 688
        h_boot = layers.data(
            shape=[self.input_dim], dtype="float32", name="h_boot"
        )
689 690 691 692 693 694 695 696 697 698 699 700
        h_boot.stop_gradient = True

        rnn = layers.StaticRNN()
        with rnn.step():
            h_pre = rnn.memory(init=h_boot)  # init doesn't have gradient
            x_t = rnn.step_input(x)

            temp_l = layers.fc(
                input=x_t,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name="W",
701 702 703 704
                    initializer=fluid.initializer.ConstantInitializer(1.0),
                ),
                bias_attr=False,
            )
705 706 707 708 709
            temp_r = layers.fc(
                input=h_pre,
                size=self.input_dim,
                param_attr=ParamAttr(
                    name="U",
710 711 712 713
                    initializer=fluid.initializer.ConstantInitializer(0.0),
                ),
                bias_attr=False,
            )
714

715 716 717
            h = paddle.nn.functional.sigmoid(
                x=layers.elementwise_add(temp_l, temp_r)
            )
718 719 720 721 722 723 724

            rnn.update_memory(h_pre, h)
            rnn.output(h)

        return rnn()


Y
Yan Chunwei 已提交
725 726
if __name__ == '__main__':
    unittest.main()