test_functional_conv3d_transpose.py 18.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
F
From00 已提交
16
import numpy as np
17 18
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
F
From00 已提交
19
import paddle.nn.functional as F
20
import unittest
F
From00 已提交
21 22
from paddle import fluid
from paddle.fluid.framework import _test_eager_guard
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
from unittest import TestCase


class TestFunctionalConv3DTranspose(TestCase):
    batch_size = 4
    spatial_shape = (8, 8, 8)
    dtype = "float32"
    output_size = None

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"

    def prepare(self):
        if isinstance(self.filter_shape, int):
46
            filter_shape = (self.filter_shape,) * 3
47 48 49 50
        else:
            filter_shape = tuple(self.filter_shape)

        self.weight = np.random.uniform(
51 52 53 54
            -1,
            1,
            (self.in_channels, self.out_channels // self.groups) + filter_shape,
        ).astype(self.dtype)
55
        if not self.no_bias:
56 57 58
            self.bias = np.random.uniform(-1, 1, (self.out_channels,)).astype(
                self.dtype
            )
59

60
        self.channel_last = self.data_format == "NDHWC"
61
        if self.channel_last:
62 63 64
            self.input_shape = (
                (self.batch_size,) + self.spatial_shape + (self.in_channels,)
            )
65
        else:
66 67 68 69
            self.input_shape = (
                self.batch_size,
                self.in_channels,
            ) + self.spatial_shape
70

71 72 73
        self.input = np.random.uniform(-1, 1, self.input_shape).astype(
            self.dtype
        )
74 75 76 77 78 79 80

    def static_graph_case_1(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
81 82 83 84 85
                    x = fluid.data(
                        "input",
                        (-1, -1, -1, -1, self.in_channels),
                        dtype=self.dtype,
                    )
86
                else:
87 88 89 90 91
                    x = fluid.data(
                        "input",
                        (-1, self.in_channels, -1, -1, -1),
                        dtype=self.dtype,
                    )
92
                y = paddle.static.nn.conv3d_transpose(
93 94 95 96 97 98 99 100 101 102
                    x,
                    self.out_channels,
                    output_size=self.output_size,
                    filter_size=self.filter_shape,
                    stride=self.stride,
                    padding=self.padding,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=I.NumpyArrayInitializer(self.weight),
                    bias_attr=False
103 104
                    if self.no_bias
                    else I.NumpyArrayInitializer(self.bias),
105
                    act=self.act,
106 107
                    data_format=self.data_format,
                )
108 109
        exe = fluid.Executor(self.place)
        exe.run(start)
110
        (out,) = exe.run(main, feed={"input": self.input}, fetch_list=[y])
111 112 113 114 115 116 117 118
        return out

    def static_graph_case_2(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                if self.channel_last:
119 120 121 122 123
                    x = x = fluid.data(
                        "input",
                        (-1, -1, -1, -1, self.in_channels),
                        dtype=self.dtype,
                    )
124
                else:
125 126 127 128 129 130 131 132
                    x = fluid.data(
                        "input",
                        (-1, self.in_channels, -1, -1, -1),
                        dtype=self.dtype,
                    )
                weight = fluid.data(
                    "weight", self.weight.shape, dtype=self.dtype
                )
133 134
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias.shape, dtype=self.dtype)
135 136 137 138 139 140 141 142 143 144 145
                y = F.conv3d_transpose(
                    x,
                    weight,
                    None if self.no_bias else bias,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    data_format=self.data_format,
                )
L
LielinJiang 已提交
146 147
                if self.act == 'sigmoid':
                    y = F.sigmoid(y)
148 149 150 151 152
        exe = fluid.Executor(self.place)
        exe.run(start)
        feed_dict = {"input": self.input, "weight": self.weight}
        if not self.no_bias:
            feed_dict["bias"] = self.bias
153
        (out,) = exe.run(main, feed=feed_dict, fetch_list=[y])
154 155 156 157 158 159 160
        return out

    def dygraph_case(self):
        with dg.guard(self.place):
            x = dg.to_variable(self.input)
            weight = dg.to_variable(self.weight)
            bias = None if self.no_bias else dg.to_variable(self.bias)
161 162 163 164 165 166 167 168 169 170 171
            y = F.conv3d_transpose(
                x,
                weight,
                bias,
                output_size=self.output_size,
                padding=self.padding,
                stride=self.stride,
                dilation=self.dilation,
                groups=self.groups,
                data_format=self.data_format,
            )
L
LielinJiang 已提交
172 173
            if self.act == 'sigmoid':
                y = F.sigmoid(y)
174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
            out = y.numpy()
        return out

    def _test_identity(self):
        self.prepare()
        out1 = self.static_graph_case_1()
        out2 = self.static_graph_case_2()
        out3 = self.dygraph_case()
        np.testing.assert_array_almost_equal(out1, out2)
        np.testing.assert_array_almost_equal(out2, out3)

    def test_identity_cpu(self):
        self.place = fluid.CPUPlace()
        self._test_identity()

F
From00 已提交
189 190 191 192
    def test_identity_cpu_check_eager(self):
        with _test_eager_guard():
            self.test_identity_cpu()

193 194 195
    @unittest.skipIf(
        not fluid.core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
196 197 198 199
    def test_identity_gpu(self):
        self.place = fluid.CUDAPlace(0)
        self._test_identity()

200 201 202
    @unittest.skipIf(
        not fluid.core.is_compiled_with_cuda(), "core is not compiled with CUDA"
    )
F
From00 已提交
203 204 205 206
    def test_identity_gpu_check_eager(self):
        with _test_eager_guard():
            self.test_identity_gpu()

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

class TestFunctionalConv3DTransposeError(TestCase):
    batch_size = 4
    spatial_shape = (8, 8, 8)
    dtype = "float32"
    output_size = None

    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = "not_valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"

    def test_exception(self):
        self.prepare()
        with self.assertRaises(ValueError):
            self.static_graph_case()

    def prepare(self):
        if isinstance(self.filter_shape, int):
233
            filter_shape = (self.filter_shape,) * 3
234 235
        else:
            filter_shape = tuple(self.filter_shape)
236 237 238 239 240
        self.weight_shape = (
            self.in_channels,
            self.out_channels // self.groups,
        ) + filter_shape
        self.bias_shape = (self.out_channels,)
241 242 243 244 245 246 247 248

    def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                self.channel_last = self.data_format == "NDHWC"
                if self.channel_last:
249 250 251 252 253
                    x = x = fluid.data(
                        "input",
                        (-1, -1, -1, -1, self.in_channels),
                        dtype=self.dtype,
                    )
254
                else:
255 256 257 258 259 260 261 262
                    x = fluid.data(
                        "input",
                        (-1, self.in_channels, -1, -1, -1),
                        dtype=self.dtype,
                    )
                weight = fluid.data(
                    "weight", self.weight_shape, dtype=self.dtype
                )
263 264
                if not self.no_bias:
                    bias = fluid.data("bias", self.bias_shape, dtype=self.dtype)
265 266 267 268 269 270 271 272 273 274 275
                y = F.conv3d_transpose(
                    x,
                    weight,
                    None if self.no_bias else bias,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    data_format=self.data_format,
                )
L
LielinJiang 已提交
276 277
                if self.act == 'sigmoid':
                    y = F.sigmoid(y)
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420


class TestFunctionalConv3DTransposeCase2(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DTransposeCase3(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DTransposeCase4(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = "same"
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = True
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DTransposeCase5(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = "valid"
        self.stride = (1, 2, 1)
        self.dilation = (2, 1, 1)
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DTransposeCase6(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "valid"
        self.stride = (1, 2, 1)
        self.dilation = 1
        self.groups = 4
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DTransposeCase7(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = "valid"
        self.output_size = (10, 17, 10)
        self.stride = (1, 2, 1)
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DTransposeCase8(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 2], [1, 2], [2, 1], [0, 0]]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


class TestFunctionalConv3DTransposeCase9(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [1, 1], [1, 1], [2, 2]]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DTransposeCase10(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [1, 1, 2, 2, 1, 1]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


class TestFunctionalConv3DTransposeCase11(TestFunctionalConv3DTranspose):
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 6
        self.filter_shape = 3
        self.padding = [1, 2, 1]
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


421 422 423
class TestFunctionalConv3DTransposeErrorCase2(
    TestFunctionalConv3DTransposeError
):
424 425 426 427 428 429 430 431 432 433 434 435 436
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [1, 2, 2, 1, 3]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


437 438 439
class TestFunctionalConv3DTransposeErrorCase3(
    TestFunctionalConv3DTransposeError
):
440 441 442 443 444 445 446 447 448 449 450 451 452
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [0, 0], [1, 1], [1, 2], [2, 1]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NDHWC"


453 454 455
class TestFunctionalConv3DTransposeErrorCase4(
    TestFunctionalConv3DTransposeError
):
456 457 458 459 460 461 462 463 464 465 466 467 468
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = [[0, 0], [1, 2], [1, 1], [0, 0], [2, 1]]
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


469 470 471
class TestFunctionalConv3DTransposeErrorCase5(
    TestFunctionalConv3DTransposeError
):
472 473 474 475 476 477 478 479 480 481 482 483 484
    def setUp(self):
        self.in_channels = -2
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


485 486 487
class TestFunctionalConv3DTransposeErrorCase7(
    TestFunctionalConv3DTransposeError
):
488 489 490 491 492 493 494 495 496 497 498 499 500 501
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.output_size = "not_valid"
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


502 503 504
class TestFunctionalConv3DTransposeErrorCase8(
    TestFunctionalConv3DTransposeError
):
505 506 507 508 509 510 511 512 513 514 515 516 517
    def setUp(self):
        self.in_channels = 4
        self.out_channels = 5
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "not_valid"


518 519 520
class TestFunctionalConv3DTransposeErrorCase9(
    TestFunctionalConv3DTransposeError
):
521 522 523 524 525 526 527 528 529 530 531 532 533
    def setUp(self):
        self.in_channels = 3
        self.out_channels = 4
        self.filter_shape = 3
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 2
        self.no_bias = False
        self.act = "sigmoid"
        self.data_format = "NCDHW"


534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
class TestFunctionalConv3DTransposeErrorCase10(TestCase):
    def setUp(self):
        self.input = np.array([])
        self.filter = np.array([])
        self.num_filters = 0
        self.filter_size = 0
        self.bias = None
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 1
        self.data_format = "NCDHW"

    def static_graph_case(self):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                x = fluid.data("input", self.input.shape, dtype=paddle.float32)
553
                y = paddle.static.nn.conv3d_transpose(
554 555 556 557 558 559 560 561
                    x,
                    self.num_filters,
                    self.filter_size,
                    stride=self.stride,
                    padding=self.padding,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=I.NumpyArrayInitializer(self.filter),
562 563 564
                    bias_attr=False
                    if self.bias is None
                    else I.NumpyArrayInitializer(self.bias),
565
                    act=None,
566 567
                    data_format=self.data_format,
                )
568 569
        exe = fluid.Executor()
        exe.run(start)
570
        (out,) = exe.run(main, feed={"input": self.input}, fetch_list=[y])
571 572 573 574 575 576
        return out

    def dygraph_case(self):
        with dg.guard():
            x = dg.to_variable(self.input, dtype=paddle.float32)
            w = dg.to_variable(self.filter, dtype=paddle.float32)
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
            b = (
                None
                if self.bias is None
                else dg.to_variable(self.bias, dtype=paddle.float32)
            )
            y = F.conv3d_transpose(
                x,
                w,
                b,
                padding=self.padding,
                stride=self.stride,
                dilation=self.dilation,
                groups=self.groups,
                data_format=self.data_format,
            )
592 593 594 595 596

    def test_dygraph_exception(self):
        with self.assertRaises(ValueError):
            self.dygraph_case()

F
From00 已提交
597 598 599 600
    def test_dygraph_exception_check_eager(self):
        with _test_eager_guard():
            self.test_dygraph_exception()

601 602 603 604 605 606
    def test_static_exception(self):
        with self.assertRaises(ValueError):
            self.static_graph_case()


class TestFunctionalConv3DTransposeErrorCase11(
607 608
    TestFunctionalConv3DTransposeErrorCase10
):
609 610 611 612 613 614 615 616 617 618 619 620 621
    def setUp(self):
        self.input = np.random.randn(1, 3, 3, 3, 3)
        self.filter = np.random.randn(3, 3, 1, 1, 1)
        self.num_filters = 3
        self.filter_size = 1
        self.bias = None
        self.padding = 0
        self.stride = 1
        self.dilation = 1
        self.groups = 0
        self.data_format = "NCDHW"


622 623
if __name__ == "__main__":
    unittest.main()