test_conv3d_transpose_layer.py 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
16
import paddle
17 18 19 20 21 22 23 24
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.nn.functional as F
import paddle.fluid.initializer as I
import unittest


class Conv3DTransposeTestCase(unittest.TestCase):
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41
    def __init__(
        self,
        methodName='runTest',
        batch_size=2,
        spartial_shape=(8, 8, 8),
        num_channels=6,
        num_filters=8,
        filter_size=3,
        output_size=None,
        padding=0,
        stride=1,
        dilation=1,
        groups=1,
        no_bias=False,
        data_format="NCDHW",
        dtype="float32",
    ):
42
        super().__init__(methodName)
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.num_filters = num_filters
        self.spartial_shape = spartial_shape
        self.filter_size = filter_size
        self.output_size = output_size

        self.padding = padding
        self.stride = stride
        self.dilation = dilation
        self.groups = groups
        self.no_bias = no_bias
        self.data_format = data_format
        self.dtype = dtype

    def setUp(self):
        self.channel_last = self.data_format == "NDHWC"
        if self.channel_last:
61 62 63
            input_shape = (
                (self.batch_size,) + self.spartial_shape + (self.num_channels,)
            )
64
        else:
65 66 67 68
            input_shape = (
                self.batch_size,
                self.num_channels,
            ) + self.spartial_shape
69 70 71 72 73 74
        self.input = np.random.randn(*input_shape).astype(self.dtype)

        if isinstance(self.filter_size, int):
            filter_size = [self.filter_size] * 3
        else:
            filter_size = self.filter_size
75 76 77 78 79 80 81
        self.weight_shape = weight_shape = (
            self.num_channels,
            self.num_filters // self.groups,
        ) + tuple(filter_size)
        self.weight = np.random.uniform(-1, 1, size=weight_shape).astype(
            self.dtype
        )
82 83 84 85
        if self.no_bias:
            self.bias = None
        else:
            self.bias = np.random.uniform(
86 87
                -1, 1, size=(self.num_filters,)
            ).astype(self.dtype)
88 89 90 91 92 93

    def fluid_layer(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
94 95 96 97 98
                input_shape = (
                    (-1, -1, -1, -1, self.num_channels)
                    if self.channel_last
                    else (-1, self.num_channels, -1, -1, -1)
                )
99 100 101 102 103 104
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
                weight_attr = I.NumpyArrayInitializer(self.weight)
                if self.bias is None:
                    bias_attr = False
                else:
                    bias_attr = I.NumpyArrayInitializer(self.bias)
105
                y_var = paddle.static.nn.conv3d_transpose(
106 107 108 109 110 111 112 113 114 115
                    x_var,
                    self.num_filters,
                    filter_size=self.filter_size,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    param_attr=weight_attr,
                    bias_attr=bias_attr,
116 117
                    data_format=self.data_format,
                )
118 119 120
        feed_dict = {"input": self.input}
        exe = fluid.Executor(place)
        exe.run(start)
121
        (y_np,) = exe.run(main, feed=feed_dict, fetch_list=[y_var])
122 123 124 125 126 127 128
        return y_np

    def functional(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
129 130 131 132 133
                input_shape = (
                    (-1, -1, -1, -1, self.num_channels)
                    if self.channel_last
                    else (-1, self.num_channels, -1, -1, -1)
                )
134
                x_var = fluid.data("input", input_shape, dtype=self.dtype)
135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
                w_var = fluid.data(
                    "weight", self.weight_shape, dtype=self.dtype
                )
                b_var = fluid.data(
                    "bias", (self.num_filters,), dtype=self.dtype
                )
                y_var = F.conv3d_transpose(
                    x_var,
                    w_var,
                    None if self.no_bias else b_var,
                    output_size=self.output_size,
                    padding=self.padding,
                    stride=self.stride,
                    dilation=self.dilation,
                    groups=self.groups,
                    data_format=self.data_format,
                )
152 153 154 155 156
        feed_dict = {"input": self.input, "weight": self.weight}
        if self.bias is not None:
            feed_dict["bias"] = self.bias
        exe = fluid.Executor(place)
        exe.run(start)
157
        (y_np,) = exe.run(main, feed=feed_dict, fetch_list=[y_var])
158 159 160 161
        return y_np

    def paddle_nn_layer(self):
        x_var = dg.to_variable(self.input)
162 163 164 165 166 167 168 169 170 171
        conv = nn.Conv3DTranspose(
            self.num_channels,
            self.num_filters,
            self.filter_size,
            padding=self.padding,
            stride=self.stride,
            dilation=self.dilation,
            groups=self.groups,
            data_format=self.data_format,
        )
172 173 174
        conv.weight.set_value(self.weight)
        if not self.no_bias:
            conv.bias.set_value(self.bias)
L
LielinJiang 已提交
175
        y_var = conv(x_var, self.output_size)
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
        y_np = y_var.numpy()
        return y_np

    def _test_equivalence(self, place):
        place = fluid.CPUPlace()
        result1 = self.fluid_layer(place)
        result2 = self.functional(place)
        with dg.guard(place):
            result3 = self.paddle_nn_layer()
        np.testing.assert_array_almost_equal(result1, result2)
        np.testing.assert_array_almost_equal(result2, result3)

    def runTest(self):
        place = fluid.CPUPlace()
        self._test_equivalence(place)

        if fluid.core.is_compiled_with_cuda():
            place = fluid.CUDAPlace(0)
            self._test_equivalence(place)


class Conv3DTransposeErrorTestCase(Conv3DTransposeTestCase):
    def runTest(self):
        place = fluid.CPUPlace()
        with dg.guard(place):
            with self.assertRaises(ValueError):
                self.paddle_nn_layer()


def add_cases(suite):
L
LielinJiang 已提交
206
    suite.addTest(Conv3DTransposeTestCase(methodName='runTest'))
207
    suite.addTest(
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
        Conv3DTransposeTestCase(
            methodName='runTest', stride=[1, 2, 1], dilation=2, no_bias=True
        )
    )
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest',
            output_size=[12, 19, 12],
            stride=[1, 2, 1],
            dilation=2,
        )
    )
    suite.addTest(
        Conv3DTransposeTestCase(
            methodName='runTest', stride=2, dilation=(2, 1, 2)
        )
    )
225
    suite.addTest(
226 227
        Conv3DTransposeTestCase(methodName='runTest', padding="valid")
    )
228
    suite.addTest(
229 230
        Conv3DTransposeTestCase(methodName='runTest', padding='valid')
    )
231
    suite.addTest(
232 233 234 235
        Conv3DTransposeTestCase(
            methodName='runTest', filter_size=1, padding=(2, 3, 1)
        )
    )
236
    suite.addTest(
237 238 239 240
        Conv3DTransposeTestCase(
            methodName='runTest', padding=[1, 2, 2, 3, 2, 1]
        )
    )
241
    suite.addTest(
242 243 244 245 246
        Conv3DTransposeTestCase(
            methodName='runTest',
            padding=[[0, 0], [0, 0], [2, 3], [1, 2], [2, 1]],
        )
    )
247
    suite.addTest(
248 249
        Conv3DTransposeTestCase(methodName='runTest', data_format="NDHWC")
    )
250
    suite.addTest(
251 252 253 254 255 256
        Conv3DTransposeTestCase(
            methodName='runTest',
            data_format="NDHWC",
            padding=[[0, 0], [1, 1], [2, 2], [3, 3], [0, 0]],
        )
    )
257
    suite.addTest(
258 259
        Conv3DTransposeTestCase(methodName='runTest', groups=2, padding="valid")
    )
260
    suite.addTest(
261 262 263 264 265 266 267 268
        Conv3DTransposeTestCase(
            methodName='runTest',
            num_filters=6,
            num_channels=3,
            groups=3,
            padding="valid",
        )
    )
269 270 271 272


def add_error_cases(suite):
    suite.addTest(
273 274 275 276
        Conv3DTransposeErrorTestCase(
            methodName='runTest', num_channels=5, groups=2
        )
    )
277
    suite.addTest(
278 279 280 281
        Conv3DTransposeErrorTestCase(
            methodName='runTest', output_size="not_valid"
        )
    )
282
    suite.addTest(
283 284 285 286
        Conv3DTransposeErrorTestCase(
            methodName='runTest', num_channels=5, groups=2, padding=[-1, 1, 3]
        )
    )
287 288 289 290 291 292 293 294 295 296 297


def load_tests(loader, standard_tests, pattern):
    suite = unittest.TestSuite()
    add_cases(suite)
    add_error_cases(suite)
    return suite


if __name__ == '__main__':
    unittest.main()