test_layers.py 89.1 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
import contextlib
import inspect
Q
Qiao Longfei 已提交
17 18
import unittest

19
import numpy as np
20
from decorator_helper import prog_scope
21
from test_imperative_base import new_program_scope
22 23 24

import paddle
import paddle.fluid as fluid
25
import paddle.fluid.layers as layers
26
import paddle.fluid.nets as nets
27
import paddle.nn.functional as F
28
from paddle.fluid import core
29
from paddle.fluid.dygraph import base, to_variable
30
from paddle.fluid.framework import Program, default_main_program, program_guard
31
from paddle.tensor import random
32 33 34 35 36 37 38 39 40 41 42


class LayerTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls.seed = 111

    @classmethod
    def tearDownClass(cls):
        pass

43 44 45 46 47 48 49 50
    def _get_place(self, force_to_use_cpu=False):
        # this option for ops that only have cpu kernel
        if force_to_use_cpu:
            return core.CPUPlace()
        else:
            if core.is_compiled_with_cuda():
                return core.CUDAPlace(0)
            return core.CPUPlace()
51 52 53 54

    @contextlib.contextmanager
    def static_graph(self):
        with new_program_scope():
C
cnn 已提交
55
            paddle.seed(self.seed)
L
Leo Chen 已提交
56
            paddle.framework.random._manual_program_seed(self.seed)
57 58
            yield

59 60 61
    def get_static_graph_result(
        self, feed, fetch_list, with_lod=False, force_to_use_cpu=False
    ):
62
        exe = fluid.Executor(self._get_place(force_to_use_cpu))
63
        exe.run(fluid.default_startup_program())
64 65 66 67 68 69
        return exe.run(
            fluid.default_main_program(),
            feed=feed,
            fetch_list=fetch_list,
            return_numpy=(not with_lod),
        )
70 71

    @contextlib.contextmanager
72
    def dynamic_graph(self, force_to_use_cpu=False):
L
lujun 已提交
73
        with fluid.dygraph.guard(
74 75
            self._get_place(force_to_use_cpu=force_to_use_cpu)
        ):
C
cnn 已提交
76
            paddle.seed(self.seed)
L
Leo Chen 已提交
77
            paddle.framework.random._manual_program_seed(self.seed)
78 79 80 81
            yield


class TestLayer(LayerTest):
82 83
    def test_custom_layer_with_kwargs(self):
        class CustomLayer(fluid.Layer):
84
            def __init__(self, input_size, linear1_size=4):
85
                super().__init__()
86
                self.linear1 = paddle.nn.Linear(
87 88
                    input_size, linear1_size, bias_attr=False
                )
89 90 91
                self.linear2 = paddle.nn.Linear(
                    linear1_size, 1, bias_attr=False
                )
92 93 94 95 96

            def forward(self, x, do_linear2=False):
                ret = self.linear1(x)
                if do_linear2:
                    ret = self.linear2(ret)
97 98 99 100 101
                return ret

        with self.dynamic_graph():
            inp = np.ones([3, 3], dtype='float32')
            x = base.to_variable(inp)
102 103
            custom = CustomLayer(input_size=3, linear1_size=2)
            ret = custom(x, do_linear2=False)
104
            np.testing.assert_array_equal(ret.numpy().shape, [3, 2])
105
            ret = custom(x, do_linear2=True)
106
            np.testing.assert_array_equal(ret.numpy().shape, [3, 1])
107

C
ccrrong 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
    def test_dropout(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
            dropout = paddle.nn.Dropout(p=0.35)
            ret = dropout(t)
            ret2 = paddle.nn.functional.dropout(t, p=0.35)
            static_ret, static_ret2 = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret, ret2]
            )
        with self.dynamic_graph():
            t = base.to_variable(inp)
            dropout = paddle.nn.Dropout(p=0.35)
            dy_ret = dropout(t)
            dy_ret2 = paddle.nn.functional.dropout(t, p=0.35)
            dy_ret_value = dy_ret.numpy()
            dy_ret2_value = dy_ret2.numpy()

        np.testing.assert_array_equal(static_ret, static_ret2)
        np.testing.assert_array_equal(dy_ret_value, dy_ret2_value)
        np.testing.assert_array_equal(static_ret, dy_ret_value)

S
songyouwei 已提交
135 136 137
    def test_linear(self):
        inp = np.ones([3, 32, 32], dtype='float32')
        with self.static_graph():
138 139 140 141 142 143
            t = layers.data(
                name='data',
                shape=[3, 32, 32],
                dtype='float32',
                append_batch_size=False,
            )
144
            linear = paddle.nn.Linear(
145 146
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
147
            ret = linear(t)
148 149 150
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
S
songyouwei 已提交
151 152
        with self.dynamic_graph():
            t = base.to_variable(inp)
153
            linear = paddle.nn.Linear(
154 155
                32, 4, bias_attr=fluid.initializer.ConstantInitializer(value=1)
            )
S
songyouwei 已提交
156 157 158
            dy_ret = linear(t)
            dy_ret_value = dy_ret.numpy()

159
        np.testing.assert_array_equal(static_ret, dy_ret_value)
S
songyouwei 已提交
160

161 162 163 164 165
        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
166
                linear = paddle.nn.Linear(
167 168
                    32,
                    4,
169 170
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
171 172 173 174 175 176 177 178
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
179
                linear = paddle.nn.Linear(
180 181
                    32,
                    4,
182 183
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
184 185 186 187
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

W
wangzhen38 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    def test_cvm(self):
        inp = np.ones([10, 10], dtype='float32')
        arr = [[0.6931472, -1.904654e-09, 1, 1, 1, 1, 1, 1, 1, 1]] * 10
        cvm1 = np.array(arr, dtype='float32')
        cvm2 = np.ones([10, 8], dtype='float32')
        show_clk = np.ones([10, 2], dtype='float32')
        with self.static_graph():
            x = paddle.static.data(
                name='data',
                shape=[10, 10],
                dtype='float32',
            )
            u = paddle.static.data(
                name='show_click',
                shape=[10, 2],
                dtype='float32',
            )
            no_cvm = paddle.static.nn.continuous_value_model(x, u, True)
            static_ret1 = self.get_static_graph_result(
                feed={'data': inp, 'show_click': show_clk},
                fetch_list=[no_cvm],
            )[0]
        with self.static_graph():
            x = paddle.static.data(
                name='data',
                shape=[10, 10],
                dtype='float32',
            )
            u = paddle.static.data(
                name='show_click',
                shape=[10, 2],
                dtype='float32',
            )
            cvm = paddle.static.nn.continuous_value_model(x, u, False)
            static_ret2 = self.get_static_graph_result(
                feed={'data': inp, 'show_click': show_clk}, fetch_list=[cvm]
            )[0]
        np.testing.assert_allclose(static_ret1, cvm1, rtol=1e-5, atol=1e-06)
        np.testing.assert_allclose(static_ret2, cvm2, rtol=1e-5, atol=1e-06)

228 229 230
    def test_Flatten(self):
        inp = np.ones([3, 4, 4, 5], dtype='float32')
        with self.static_graph():
231 232 233 234 235 236
            t = layers.data(
                name='data',
                shape=[3, 4, 4, 5],
                dtype='float32',
                append_batch_size=False,
            )
237
            flatten = paddle.nn.Flatten()
238
            ret = flatten(t)
239 240 241
            static_ret = self.get_static_graph_result(
                feed={'data': inp}, fetch_list=[ret]
            )[0]
242 243
        with self.dynamic_graph():
            t = base.to_variable(inp)
244
            flatten = paddle.nn.Flatten()
245 246 247
            dy_ret = flatten(t)
            dy_ret_value = dy_ret.numpy()

248
        np.testing.assert_array_equal(static_ret, dy_ret_value)
249 250 251 252 253 254

        with self.static_graph():

            # the input of Linear must be Variable.
            def test_Variable():
                inp = np.ones([3, 32, 32], dtype='float32')
255
                linear = paddle.nn.Linear(
256 257
                    32,
                    4,
258 259
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
260 261 262 263 264 265 266 267
                linear_ret1 = linear(inp)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Linear must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
                inp = np.ones([3, 32, 32], dtype='int32')
268
                linear = paddle.nn.Linear(
269 270
                    32,
                    4,
271 272
                    bias_attr=fluid.initializer.ConstantInitializer(value=1),
                )
273 274 275 276
                linear_ret2 = linear(inp)

            self.assertRaises(TypeError, test_type)

C
ceci3 已提交
277 278 279 280
    def test_SyncBatchNorm(self):
        if core.is_compiled_with_cuda():
            with self.static_graph():
                t = layers.data(name='t', shape=[-1, 3, 5, 5], dtype='float32')
C
ceci3 已提交
281
                my_sync_bn = paddle.nn.SyncBatchNorm(3)
C
ceci3 已提交
282 283
                ret = my_sync_bn(t)
                static_ret = self.get_static_graph_result(
284
                    feed={'t': np.ones([3, 3, 5, 5], dtype='float32')},
285 286
                    fetch_list=[ret],
                )[0]
C
ceci3 已提交
287 288 289 290 291 292

            with self.dynamic_graph():
                t = np.ones([3, 3, 5, 5], dtype='float32')
                my_syncbn = paddle.nn.SyncBatchNorm(3)
                dy_ret = my_syncbn(base.to_variable(t))
                dy_ret_value = dy_ret.numpy()
293
            np.testing.assert_array_equal(static_ret, dy_ret_value)
C
ceci3 已提交
294

295 296 297
    def test_relu(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
298
            ret = F.relu(t)
299
            static_ret = self.get_static_graph_result(
300 301
                feed={'t': np.ones([3, 3], dtype='float32')}, fetch_list=[ret]
            )[0]
302 303 304

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
305
            dy_ret = F.relu(base.to_variable(t))
306
            dy_ret_value = dy_ret.numpy()
307

308
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
C
ceci3 已提交
309

310 311 312 313
    def test_matmul(self):
        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
K
kangguangli 已提交
314
            ret = paddle.matmul(t, t2)
315 316 317 318 319 320 321
            static_ret = self.get_static_graph_result(
                feed={
                    't': np.ones([3, 3], dtype='float32'),
                    't2': np.ones([3, 3], dtype='float32'),
                },
                fetch_list=[ret],
            )[0]
322 323 324 325

        with self.dynamic_graph():
            t = np.ones([3, 3], dtype='float32')
            t2 = np.ones([3, 3], dtype='float32')
K
kangguangli 已提交
326
            dy_ret = paddle.matmul(base.to_variable(t), base.to_variable(t2))
327
            dy_ret_value = dy_ret.numpy()
328

329
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
330

X
Xin Pan 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
    def test_elementwise_math(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 1.1
        n3 = np.ones([3, 3], dtype='float32') * 2
        n4 = np.ones([3, 3], dtype='float32') * 3
        n5 = np.ones([3, 3], dtype='float32') * 4
        n6 = np.ones([3, 3], dtype='float32') * 5

        with self.static_graph():
            t = layers.data(name='t', shape=[3, 3], dtype='float32')
            t2 = layers.data(name='t2', shape=[3, 3], dtype='float32')
            t3 = layers.data(name='t3', shape=[3, 3], dtype='float32')
            t4 = layers.data(name='t4', shape=[3, 3], dtype='float32')
            t5 = layers.data(name='t5', shape=[3, 3], dtype='float32')
            t6 = layers.data(name='t6', shape=[3, 3], dtype='float32')

347
            ret = paddle.add(t, t2)
348
            ret = paddle.pow(ret, t3)
349 350 351
            ret = paddle.divide(ret, t4)
            ret = paddle.subtract(ret, t5)
            ret = paddle.multiply(ret, t6)
X
Xin Pan 已提交
352

353 354 355 356
            static_ret = self.get_static_graph_result(
                feed={'t': n, 't2': n2, 't3': n3, 't4': n4, 't5': n5, 't6': n6},
                fetch_list=[ret],
            )[0]
X
Xin Pan 已提交
357 358

        with self.dynamic_graph():
359
            ret = paddle.add(to_variable(n), to_variable(n2))
360
            ret = paddle.pow(ret, to_variable(n3))
361 362 363
            ret = paddle.divide(ret, to_variable(n4))
            ret = paddle.subtract(ret, to_variable(n5))
            dy_ret = paddle.multiply(ret, to_variable(n6))
364
            dy_ret_value = dy_ret.numpy()
365

366
        np.testing.assert_allclose(static_ret, dy_ret_value, rtol=1e-05)
X
Xin Pan 已提交
367 368 369 370 371 372

    def test_elementwise_minmax(self):
        n = np.ones([3, 3], dtype='float32')
        n2 = np.ones([3, 3], dtype='float32') * 2

        with self.dynamic_graph():
373
            min_ret = paddle.minimum(to_variable(n), to_variable(n2))
H
HongyuJia 已提交
374
            max_ret = paddle.maximum(to_variable(n), to_variable(n2))
375 376
            min_ret_value = min_ret.numpy()
            max_ret_value = max_ret.numpy()
X
Xin Pan 已提交
377

378 379
        np.testing.assert_allclose(n, min_ret_value, rtol=1e-05)
        np.testing.assert_allclose(n2, max_ret_value, rtol=1e-05)
X
Xin Pan 已提交
380

381 382 383 384
    def test_conv2d_transpose(self):
        inp_np = np.arange(0, 24).reshape([2, 3, 2, 2]).astype('float32')
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
385
            out = paddle.static.nn.conv2d_transpose(
386 387
                input=img,
                num_filters=10,
388
                filter_size=27,
389
                act='sigmoid',
390 391 392 393 394
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_rlt = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
395 396
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2], dtype='float32')
397 398 399 400
            conv2d_transpose = paddle.nn.Conv2DTranspose(
                3,
                10,
                27,
401 402
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
403
            out = conv2d_transpose(img)
404
            out = paddle.nn.functional.sigmoid(out)
405 406 407
            static_rlt2 = self.get_static_graph_result(
                feed={'pixel': inp_np}, fetch_list=[out]
            )[0]
408
        with self.dynamic_graph():
409 410 411 412
            conv2d_transpose = paddle.nn.Conv2DTranspose(
                3,
                10,
                27,
413 414
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
415
            dy_rlt = conv2d_transpose(base.to_variable(inp_np))
416
            dy_rlt = paddle.nn.functional.sigmoid(dy_rlt)
417
            dy_rlt_value = dy_rlt.numpy()
418 419
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt2, rtol=1e-05)
420

421 422 423
        with self.dynamic_graph():
            images = np.ones([2, 3, 5, 5], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2).astype("float32")
424 425 426 427 428
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
429 430 431 432 433 434
            conv2d1 = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
            conv2d2 = paddle.nn.Conv2DTranspose(
                3,
                3,
                [2, 2],
                weight_attr=weight_attr,
435
            )
436 437 438 439 440 441 442
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv2d1_weight_np = conv2d1.weight.numpy()
            conv2d1_bias = conv2d1.bias
            self.assertFalse(
443 444
                np.array_equal(conv2d1_weight_np, conv2d2.weight.numpy())
            )
445
            conv2d2.weight.set_value(conv2d1_weight_np)
446 447 448
            np.testing.assert_array_equal(
                conv2d1_weight_np, conv2d2.weight.numpy()
            )
449 450 451
            conv2d2.bias.set_value(conv2d1_bias)
            dy_ret1 = conv2d1(base.to_variable(images))
            dy_ret2 = conv2d2(base.to_variable(images))
452
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
453 454 455

            conv2d2.weight = conv2d1.weight
            conv2d2.bias = conv2d1.bias
456 457 458 459 460 461
            np.testing.assert_array_equal(
                conv2d1.weight.numpy(), conv2d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv2d1.bias.numpy(), conv2d2.bias.numpy()
            )
462

463 464 465 466 467
        with self.static_graph():

            # the input of Conv2DTranspose must be Variable.
            def test_Variable():
                images = np.ones([2, 3, 5, 5], dtype='float32')
468
                conv2d = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
469 470 471 472 473 474 475
                conv2d_ret1 = conv2d(images)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of Conv2DTranspose must be float16 or float32 or float64
            # float16 only can be set on GPU place
            def test_type():
476 477 478
                images = layers.data(
                    name='pixel', shape=[3, 5, 5], dtype='int32'
                )
479
                conv2d = paddle.nn.Conv2DTranspose(3, 3, [2, 2])
480 481 482 483
                conv2d_ret2 = conv2d(images)

            self.assertRaises(TypeError, test_type)

484 485 486 487 488
    def test_bilinear_tensor_product(self):
        inp_np_x = np.array([[1, 2, 3]]).astype('float32')
        inp_np_y = np.array([[4, 5, 6]]).astype('float32')

        with self.static_graph():
489 490 491 492 493 494
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
495
            out = paddle.static.nn.common.bilinear_tensor_product(
496 497 498 499
                data_x,
                data_y,
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
500 501
                act='sigmoid',
            )
502

503 504 505
            static_rlt = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
506

507
        with self.static_graph():
508 509 510 511 512 513
            data_x = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
514
            btp = paddle.nn.Bilinear(
515 516
                3,
                3,
517 518
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
519
            )
520
            out = btp(data_x, data_y)
521
            out = paddle.nn.functional.sigmoid(out)
522 523 524
            static_rlt2 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out]
            )[0]
525
        with self.dynamic_graph():
526
            btp = paddle.nn.Bilinear(
527 528
                3,
                3,
529 530
                6,
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
531
            )
532
            dy_rlt = btp(base.to_variable(inp_np_x), base.to_variable(inp_np_y))
533
            dy_rlt = paddle.nn.functional.sigmoid(dy_rlt)
534
            dy_rlt_value = dy_rlt.numpy()
535

536
        with self.dynamic_graph():
537
            btp2 = paddle.nn.Bilinear(3, 3, 6)
538 539 540
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
541
            dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
542
            dy_rlt2_value = dy_rlt2.numpy()
543

544
        with self.static_graph():
545 546 547 548 549 550
            data_x2 = layers.data(
                name='x', shape=[1, 3], dtype="float32", append_batch_size=False
            )
            data_y2 = layers.data(
                name='y', shape=[1, 3], dtype="float32", append_batch_size=False
            )
551
            out2 = paddle.static.nn.common.bilinear_tensor_product(
552 553 554 555 556 557
                data_x2, data_y2, 6, act='sigmoid'
            )

            static_rlt3 = self.get_static_graph_result(
                feed={'x': inp_np_x, 'y': inp_np_y}, fetch_list=[out2]
            )[0]
558

559 560 561
        np.testing.assert_array_equal(dy_rlt2_value, static_rlt3)
        np.testing.assert_array_equal(static_rlt2, static_rlt)
        np.testing.assert_array_equal(dy_rlt_value, static_rlt)
562

563 564
        with self.dynamic_graph():
            custom_weight = np.random.randn(6, 3, 3).astype("float32")
565 566 567 568 569
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
570 571
            btp1 = paddle.nn.Bilinear(3, 3, 6)
            btp2 = paddle.nn.Bilinear(3, 3, 6, weight_attr=weight_attr)
572 573 574
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
575
            dy_rlt1 = paddle.nn.functional.sigmoid(dy_rlt1)
576 577 578
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
579
            dy_rlt2 = paddle.nn.functional.sigmoid(dy_rlt2)
580 581 582
            self.assertFalse(np.array_equal(dy_rlt1.numpy(), dy_rlt2.numpy()))
            btp2.weight.set_value(btp1.weight.numpy())
            btp2.bias.set_value(btp1.bias)
583 584 585 586 587 588
            dy_rlt1 = btp1(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
            dy_rlt2 = btp2(
                base.to_variable(inp_np_x), base.to_variable(inp_np_y)
            )
589
            np.testing.assert_array_equal(dy_rlt1.numpy(), dy_rlt2.numpy())
590 591 592

            btp2.weight = btp1.weight
            btp2.bias = btp1.bias
593 594 595
            np.testing.assert_array_equal(
                btp1.weight.numpy(), btp2.weight.numpy()
            )
596
            np.testing.assert_array_equal(btp1.bias.numpy(), btp2.bias.numpy())
597

598 599 600 601 602
    def test_embeding(self):
        inp_word = np.array([[[1]]]).astype('int64')
        dict_size = 20
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
603 604 605 606 607 608 609 610 611
            emb = layers.embedding(
                input=data_t,
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=False,
            )
            static_rlt = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb]
            )[0]
612 613
        with self.static_graph():
            data_t = layers.data(name='word', shape=[1], dtype='int64')
614 615
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr='emb.w', sparse=False
616
            )
617
            emb_rlt = emb2(data_t)
618 619 620
            static_rlt2 = self.get_static_graph_result(
                feed={'word': inp_word}, fetch_list=[emb_rlt]
            )[0]
621
        with self.dynamic_graph():
622

623 624
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr='emb.w', sparse=False
625
            )
626 627
            dy_rlt = emb2(base.to_variable(inp_word))
            dy_rlt_value = dy_rlt.numpy()
628 629

        self.assertTrue(np.allclose(static_rlt2, static_rlt))
630
        self.assertTrue(np.allclose(dy_rlt_value, static_rlt))
631

632 633
        with self.dynamic_graph():
            custom_weight = np.random.randn(dict_size, 32).astype("float32")
634 635 636 637 638
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
639 640 641
            emb1 = paddle.nn.Embedding(dict_size, 32, sparse=False)
            emb2 = paddle.nn.Embedding(
                dict_size, 32, weight_attr=weight_attr, sparse=False
642
            )
643 644 645
            rep1 = emb1(base.to_variable(inp_word))
            rep2 = emb2(base.to_variable(inp_word))
            self.assertFalse(np.array_equal(emb1.weight.numpy(), custom_weight))
646
            np.testing.assert_array_equal(emb2.weight.numpy(), custom_weight)
647 648 649
            self.assertFalse(np.array_equal(rep1.numpy(), rep2.numpy()))
            emb2.weight.set_value(emb1.weight.numpy())
            rep2 = emb2(base.to_variable(inp_word))
650
            np.testing.assert_array_equal(rep1.numpy(), rep2.numpy())
651 652

            emb2.weight = emb1.weight
653 654 655
            np.testing.assert_array_equal(
                emb1.weight.numpy(), emb2.weight.numpy()
            )
656

S
songyouwei 已提交
657 658 659
    def test_one_hot(self):
        with self.dynamic_graph():
            label = fluid.dygraph.to_variable(np.array([[1], [1], [3], [0]]))
660 661 662
            one_hot_label1 = paddle.nn.functional.one_hot(label, 4)
            one_hot_label2 = paddle.nn.functional.one_hot(
                label, fluid.dygraph.to_variable(np.array([4]))
663 664 665 666
            )
            np.testing.assert_array_equal(
                one_hot_label1.numpy(), one_hot_label2.numpy()
            )
S
songyouwei 已提交
667 668 669 670

    def test_split(self):
        with self.dynamic_graph():
            input = fluid.dygraph.to_variable(np.random.random((3, 8, 5)))
671 672
            x0, x1 = paddle.split(input, num_or_sections=2, axis=1)
            x00, x11 = paddle.split(
673 674
                input,
                num_or_sections=2,
675
                axis=fluid.dygraph.to_variable(np.array([1])),
676
            )
677 678
            np.testing.assert_array_equal(x0.numpy(), x00.numpy())
            np.testing.assert_array_equal(x1.numpy(), x11.numpy())
S
songyouwei 已提交
679 680 681 682

    def test_topk(self):
        with self.dynamic_graph():
            input = fluid.dygraph.to_variable(np.random.random((13, 11)))
683 684
            top5_values1, top5_indices1 = paddle.topk(input, k=5)
            top5_values2, top5_indices2 = paddle.topk(
685 686 687 688 689 690 691 692
                input, k=fluid.dygraph.to_variable(np.array([5]))
            )
            np.testing.assert_array_equal(
                top5_values1.numpy(), top5_values2.numpy()
            )
            np.testing.assert_array_equal(
                top5_indices1.numpy(), top5_indices2.numpy()
            )
S
songyouwei 已提交
693

L
lujun 已提交
694 695
    def test_conv3d(self):
        with self.static_graph():
696 697 698
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
699 700 701
            ret = paddle.static.nn.conv3d(
                input=images, num_filters=3, filter_size=2
            )
L
lujun 已提交
702
            static_ret = self.get_static_graph_result(
703
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
704 705
                fetch_list=[ret],
            )[0]
L
lujun 已提交
706 707

        with self.static_graph():
708 709 710
            images = layers.data(
                name='pixel', shape=[3, 6, 6, 6], dtype='float32'
            )
711 712 713
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
714 715
            ret = conv3d(images)
            static_ret2 = self.get_static_graph_result(
716
                feed={'pixel': np.ones([2, 3, 6, 6, 6], dtype='float32')},
717 718
                fetch_list=[ret],
            )[0]
L
lujun 已提交
719 720 721

        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
722 723 724
            conv3d = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
L
lujun 已提交
725
            dy_ret = conv3d(base.to_variable(images))
726
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
727

728 729
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
730

731 732 733
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
734 735 736 737 738
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
739 740 741 742 743 744 745 746
            conv3d1 = paddle.nn.Conv3D(
                in_channels=3, out_channels=3, kernel_size=2
            )
            conv3d2 = paddle.nn.Conv3D(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
747
            )
748 749 750 751 752 753 754
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
755 756
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
757
            conv3d2.weight.set_value(conv3d1_weight_np)
758 759 760
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
761 762 763
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
764
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
765 766 767

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
768 769 770 771 772 773
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
774

775
    def test_group_norm(self):
L
lujun 已提交
776 777 778 779 780 781 782 783 784 785
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
786 787 788 789 790 791 792
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
793
            ret = paddle.static.nn.group_norm(
794 795
                input=X,
                groups=2,
796
                param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
797 798 799 800 801 802 803 804 805 806 807
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
            static_ret = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
808 809

        with self.static_graph():
810 811 812 813 814 815 816
            X = fluid.layers.data(
                name='X',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
817 818 819 820
            groupNorm = paddle.nn.GroupNorm(
                num_channels=shape[1],
                num_groups=2,
                weight_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
821 822
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
823
            ret = groupNorm(X)
824 825 826 827 828 829 830 831 832
            static_ret2 = self.get_static_graph_result(
                feed={
                    'X': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
833 834

        with self.dynamic_graph():
835 836 837 838
            groupNorm = paddle.nn.GroupNorm(
                num_channels=shape[1],
                num_groups=2,
                weight_attr=fluid.initializer.Uniform(low=-0.5, high=0.5),
839 840
                bias_attr=fluid.initializer.ConstantInitializer(value=1),
            )
L
lujun 已提交
841
            dy_ret = groupNorm(base.to_variable(input))
842
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
843

844 845
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
846

847 848 849 850 851 852 853 854 855 856 857
    def test_instance_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
858 859 860
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
861
            ret = paddle.static.nn.instance_norm(input=X)
862 863 864
            static_ret = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
865 866

        with self.static_graph():
867 868 869
            X = fluid.layers.data(
                name='X', shape=shape, dtype='float32', append_batch_size=False
            )
870
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
871
            ret = instanceNorm(X)
872 873 874
            static_ret2 = self.get_static_graph_result(
                feed={'X': input}, fetch_list=[ret]
            )[0]
875 876

        with self.dynamic_graph():
877
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
878 879 880 881
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value = dy_ret.numpy()

        with self.dynamic_graph():
882
            instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
883 884 885
            dy_ret = instanceNorm(base.to_variable(input))
            dy_rlt_value2 = dy_ret.numpy()

886 887 888
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, dy_rlt_value2, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
889 890 891 892

        with self.static_graph():
            # the input of InstanceNorm must be Variable.
            def test_Variable():
893
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
894 895 896 897 898 899 900
                ret1 = instanceNorm(input)

            self.assertRaises(TypeError, test_Variable)

            # the input dtype of InstanceNorm must be float32 or float64
            def test_type():
                input = np.random.random(shape).astype('int32')
901
                instanceNorm = paddle.nn.InstanceNorm2D(num_features=shape[1])
902 903 904 905
                ret2 = instanceNorm(input)

            self.assertRaises(TypeError, test_type)

L
lujun 已提交
906 907 908 909 910 911 912 913 914 915 916
    def test_spectral_norm(self):
        if core.is_compiled_with_cuda():
            place = core.CUDAPlace(0)
        else:
            place = core.CPUPlace()

        shape = (2, 4, 3, 3)

        input = np.random.random(shape).astype('float32')

        with self.static_graph():
917 918 919 920 921 922 923
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
924 925 926
            ret = paddle.static.nn.spectral_norm(
                weight=Weight, dim=1, power_iters=2
            )
927 928 929 930 931 932 933 934 935
            static_ret = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    ),
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
936 937

        with self.static_graph():
938 939 940 941 942 943 944
            Weight = fluid.layers.data(
                name='Weight',
                shape=shape,
                dtype='float32',
                lod_level=1,
                append_batch_size=False,
            )
945
            spectralNorm = paddle.nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
946
            ret = spectralNorm(Weight)
947 948 949 950 951 952 953 954 955
            static_ret2 = self.get_static_graph_result(
                feed={
                    'Weight': fluid.create_lod_tensor(
                        data=input, recursive_seq_lens=[[1, 1]], place=place
                    )
                },
                fetch_list=[ret],
                with_lod=True,
            )[0]
L
lujun 已提交
956 957

        with self.dynamic_graph():
958
            spectralNorm = paddle.nn.SpectralNorm(shape, dim=1, power_iters=2)
L
lujun 已提交
959
            dy_ret = spectralNorm(base.to_variable(input))
960
            dy_rlt_value = dy_ret.numpy()
L
lujun 已提交
961

962 963
        np.testing.assert_allclose(static_ret, dy_rlt_value, rtol=1e-05)
        np.testing.assert_allclose(static_ret, static_ret2, rtol=1e-05)
L
lujun 已提交
964 965

    def test_conv3d_transpose(self):
966 967 968
        input_array = (
            np.arange(0, 48).reshape([2, 3, 2, 2, 2]).astype('float32')
        )
L
lujun 已提交
969 970 971

        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
972
            out = paddle.static.nn.conv3d_transpose(
973
                input=img, num_filters=12, filter_size=12, use_cudnn=True
974
            )
L
lujun 已提交
975
            static_rlt = self.get_static_graph_result(
976 977
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
978 979
        with self.static_graph():
            img = layers.data(name='pixel', shape=[3, 2, 2, 2], dtype='float32')
980 981
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
982
            )
L
lujun 已提交
983 984
            out = conv3d_transpose(img)
            static_rlt2 = self.get_static_graph_result(
985 986
                feed={'pixel': input_array}, fetch_list=[out]
            )[0]
L
lujun 已提交
987
        with self.dynamic_graph():
988 989
            conv3d_transpose = paddle.nn.Conv3DTranspose(
                in_channels=3, out_channels=12, kernel_size=12
990
            )
L
lujun 已提交
991
            dy_rlt = conv3d_transpose(base.to_variable(input_array))
992
            dy_rlt_value = dy_rlt.numpy()
993 994
        np.testing.assert_allclose(static_rlt2, static_rlt, rtol=1e-05)
        np.testing.assert_allclose(dy_rlt_value, static_rlt, rtol=1e-05)
L
lujun 已提交
995

996 997 998
        with self.dynamic_graph():
            images = np.ones([2, 3, 6, 6, 6], dtype='float32')
            custom_weight = np.random.randn(3, 3, 2, 2, 2).astype("float32")
999 1000 1001 1002 1003
            weight_attr = fluid.ParamAttr(
                initializer=fluid.initializer.NumpyArrayInitializer(
                    custom_weight
                )
            )
1004 1005 1006 1007
            conv3d1 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
1008 1009
                bias_attr='conv3d1_b',
            )
1010 1011 1012 1013 1014
            conv3d2 = paddle.nn.Conv3DTranspose(
                in_channels=3,
                out_channels=3,
                kernel_size=2,
                weight_attr=weight_attr,
1015 1016
                bias_attr='conv3d2_b',
            )
1017 1018 1019 1020 1021 1022 1023
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
            self.assertFalse(np.array_equal(dy_ret1.numpy(), dy_ret2.numpy()))

            conv3d1_weight_np = conv3d1.weight.numpy()
            conv3d1_bias = conv3d1.bias
            self.assertFalse(
1024 1025
                np.array_equal(conv3d1_weight_np, conv3d2.weight.numpy())
            )
1026
            conv3d2.weight.set_value(conv3d1_weight_np)
1027 1028 1029
            np.testing.assert_array_equal(
                conv3d1_weight_np, conv3d2.weight.numpy()
            )
1030 1031 1032
            conv3d1.bias.set_value(conv3d1_bias)
            dy_ret1 = conv3d1(base.to_variable(images))
            dy_ret2 = conv3d2(base.to_variable(images))
1033
            np.testing.assert_array_equal(dy_ret1.numpy(), dy_ret2.numpy())
1034 1035 1036

            conv3d2.weight = conv3d1.weight
            conv3d2.bias = conv3d1.bias
1037 1038 1039 1040 1041 1042
            np.testing.assert_array_equal(
                conv3d1.weight.numpy(), conv3d2.weight.numpy()
            )
            np.testing.assert_array_equal(
                conv3d1.bias.numpy(), conv3d2.bias.numpy()
            )
1043

1044
    def test_while_loop(self):
1045 1046 1047 1048 1049
        with self.static_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

            def cond(i):
L
LiYuRio 已提交
1050
                return paddle.less_than(i, ten)
1051 1052 1053 1054

            def body(i):
                return i + 1

1055
            out = paddle.static.nn.while_loop(cond, body, [i])
1056 1057 1058 1059 1060 1061
            static_ret = self.get_static_graph_result(feed={}, fetch_list=out)

        with self.dynamic_graph():
            i = layers.fill_constant(shape=[1], dtype='int64', value=0)
            ten = layers.fill_constant(shape=[1], dtype='int64', value=10)

1062
            def cond1(i):
L
LiYuRio 已提交
1063
                return paddle.less_than(i, ten)
1064

1065
            def body1(i):
1066 1067
                return i + 1

1068
            dy_ret = paddle.static.nn.while_loop(cond1, body1, [i])
1069 1070 1071 1072 1073 1074
            with self.assertRaises(ValueError):
                j = layers.fill_constant(shape=[1], dtype='int64', value=0)

                def body2(i):
                    return i + 1, i + 2

1075
                paddle.static.nn.while_loop(cond1, body2, [j])
1076

1077
        np.testing.assert_array_equal(static_ret[0], dy_ret[0].numpy())
1078

1079 1080 1081 1082 1083 1084 1085
    def test_compare(self):
        value_a = np.arange(3)
        value_b = np.arange(3)
        # less than
        with self.static_graph():
            a = layers.data(name='a', shape=[1], dtype='int64')
            b = layers.data(name='b', shape=[1], dtype='int64')
L
LiYuRio 已提交
1086
            cond = paddle.less_than(x=a, y=b)
1087 1088 1089
            static_ret = self.get_static_graph_result(
                feed={"a": value_a, "b": value_b}, fetch_list=[cond]
            )[0]
1090 1091 1092
        with self.dynamic_graph():
            da = base.to_variable(value_a)
            db = base.to_variable(value_b)
L
LiYuRio 已提交
1093
            dcond = paddle.less_than(x=da, y=db)
1094

1095 1096
            for i in range(len(static_ret)):
                self.assertTrue(dcond.numpy()[i] == static_ret[i])
1097 1098 1099 1100 1101

        # less equal
        with self.static_graph():
            a1 = layers.data(name='a1', shape=[1], dtype='int64')
            b1 = layers.data(name='b1', shape=[1], dtype='int64')
1102
            cond1 = paddle.less_equal(x=a1, y=b1)
1103 1104 1105
            static_ret1 = self.get_static_graph_result(
                feed={"a1": value_a, "b1": value_b}, fetch_list=[cond1]
            )[0]
1106 1107 1108
        with self.dynamic_graph():
            da1 = base.to_variable(value_a)
            db1 = base.to_variable(value_b)
1109
            dcond1 = paddle.less_equal(x=da1, y=db1)
1110 1111 1112 1113

            for i in range(len(static_ret1)):
                self.assertTrue(dcond1.numpy()[i] == static_ret1[i])

1114
        # greater than
1115 1116 1117
        with self.static_graph():
            a2 = layers.data(name='a2', shape=[1], dtype='int64')
            b2 = layers.data(name='b2', shape=[1], dtype='int64')
1118
            cond2 = paddle.greater_than(x=a2, y=b2)
1119 1120 1121
            static_ret2 = self.get_static_graph_result(
                feed={"a2": value_a, "b2": value_b}, fetch_list=[cond2]
            )[0]
1122 1123 1124
        with self.dynamic_graph():
            da2 = base.to_variable(value_a)
            db2 = base.to_variable(value_b)
1125
            dcond2 = paddle.greater_than(x=da2, y=db2)
1126 1127 1128 1129

            for i in range(len(static_ret2)):
                self.assertTrue(dcond2.numpy()[i] == static_ret2[i])

1130
        # greater equal
1131 1132 1133
        with self.static_graph():
            a3 = layers.data(name='a3', shape=[1], dtype='int64')
            b3 = layers.data(name='b3', shape=[1], dtype='int64')
1134
            cond3 = paddle.greater_equal(x=a3, y=b3)
1135 1136 1137
            static_ret3 = self.get_static_graph_result(
                feed={"a3": value_a, "b3": value_b}, fetch_list=[cond3]
            )[0]
1138 1139 1140
        with self.dynamic_graph():
            da3 = base.to_variable(value_a)
            db3 = base.to_variable(value_b)
1141
            dcond3 = paddle.greater_equal(x=da3, y=db3)
1142 1143 1144 1145 1146 1147 1148 1149

            for i in range(len(static_ret3)):
                self.assertTrue(dcond3.numpy()[i] == static_ret3[i])

        # equal
        with self.static_graph():
            a4 = layers.data(name='a4', shape=[1], dtype='int64')
            b4 = layers.data(name='b4', shape=[1], dtype='int64')
1150
            cond4 = paddle.equal(x=a4, y=b4)
1151 1152 1153
            static_ret4 = self.get_static_graph_result(
                feed={"a4": value_a, "b4": value_b}, fetch_list=[cond4]
            )[0]
1154 1155 1156
        with self.dynamic_graph():
            da4 = base.to_variable(value_a)
            db4 = base.to_variable(value_b)
1157
            dcond4 = paddle.equal(x=da4, y=db4)
1158 1159 1160 1161 1162 1163 1164 1165

            for i in range(len(static_ret4)):
                self.assertTrue(dcond4.numpy()[i] == static_ret4[i])

        # not equal
        with self.static_graph():
            a5 = layers.data(name='a5', shape=[1], dtype='int64')
            b5 = layers.data(name='b5', shape=[1], dtype='int64')
1166
            cond5 = paddle.equal(x=a5, y=b5)
1167 1168 1169
            static_ret5 = self.get_static_graph_result(
                feed={"a5": value_a, "b5": value_b}, fetch_list=[cond5]
            )[0]
1170 1171 1172
        with self.dynamic_graph():
            da5 = base.to_variable(value_a)
            db5 = base.to_variable(value_b)
1173
            dcond5 = paddle.equal(x=da5, y=db5)
1174 1175 1176 1177

            for i in range(len(static_ret5)):
                self.assertTrue(dcond5.numpy()[i] == static_ret5[i])

1178 1179
    def test_cond(self):
        def less_than_branch(a, b):
1180
            return paddle.add(a, b)
1181 1182

        def greater_equal_branch(a, b):
1183
            return paddle.subtract(a, b)
1184 1185

        with self.static_graph():
1186 1187 1188 1189 1190 1191
            a = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.1
            )
            b = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=0.23
            )
1192
            out = paddle.static.nn.cond(
1193 1194 1195 1196 1197 1198 1199 1200 1201
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1202 1203 1204 1205 1206 1207 1208
            exe = fluid.Executor(place)
            ret = exe.run(fetch_list=[out])
            static_res = ret[0]

        with self.dynamic_graph():
            a = fluid.dygraph.to_variable(np.array([0.1]).astype('float32'))
            b = fluid.dygraph.to_variable(np.array([0.23]).astype('float32'))
1209
            out = paddle.static.nn.cond(
1210 1211 1212 1213
                a < b,
                lambda: less_than_branch(a, b),
                lambda: greater_equal_branch(a, b),
            )
1214
            out2 = paddle.static.nn.cond(
1215 1216 1217 1218
                a >= b,
                lambda: greater_equal_branch(a, b),
                lambda: less_than_branch(a, b),
            )
1219 1220
            dynamic_res = out.numpy()
            dynamic_res2 = out2.numpy()
1221
            np.testing.assert_array_equal(dynamic_res, dynamic_res2)
1222
            with self.assertRaises(TypeError):
1223
                paddle.static.nn.cond(a < b, 'str', 'str')
1224
            with self.assertRaises(TypeError):
1225
                paddle.static.nn.cond(a >= b, 'str', 'str')
1226

1227
        np.testing.assert_array_equal(static_res, dynamic_res)
1228

1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243
    def test_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1244 1245
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1246
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1247

1248
            out_1 = paddle.static.nn.case(
1249 1250
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
1251 1252 1253
            out_2 = paddle.static.nn.case(
                pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
            )
1254

1255 1256 1257 1258 1259
            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1260 1261 1262 1263 1264 1265 1266 1267
            exe = fluid.Executor(place)
            static_res1, static_res2 = exe.run(fetch_list=[out_1, out_2])

        with self.dynamic_graph():
            x = layers.fill_constant(shape=[1], dtype='float32', value=0.3)
            y = layers.fill_constant(shape=[1], dtype='float32', value=0.1)
            z = layers.fill_constant(shape=[1], dtype='float32', value=0.2)

L
LiYuRio 已提交
1268 1269
            pred_1 = paddle.less_than(z, x)  # true: 0.2 < 0.3
            pred_2 = paddle.less_than(x, y)  # false: 0.3 < 0.1
1270
            pred_3 = paddle.equal(x, y)  # false: 0.3 == 0.1
1271

1272
            out_1 = paddle.static.nn.case(
1273 1274
                pred_fn_pairs=[(pred_1, fn_1), (pred_2, fn_2)], default=fn_3
            )
1275 1276 1277
            out_2 = paddle.static.nn.case(
                pred_fn_pairs=[(pred_2, fn_2), (pred_3, fn_3)]
            )
1278 1279 1280
            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()

1281 1282
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297

    def test_switch_case(self):
        def fn_1():
            return layers.fill_constant(shape=[1, 2], dtype='float32', value=1)

        def fn_2():
            return layers.fill_constant(shape=[2, 2], dtype='int32', value=2)

        def fn_3():
            return layers.fill_constant(shape=[3], dtype='int32', value=3)

        with self.static_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

1298
            out_1 = paddle.static.nn.switch_case(
1299 1300 1301 1302
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
1303
            out_2 = paddle.static.nn.switch_case(
1304 1305 1306 1307
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
1308
            out_3 = paddle.static.nn.switch_case(
1309 1310 1311 1312 1313 1314 1315 1316 1317
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )

            place = (
                fluid.CUDAPlace(0)
                if core.is_compiled_with_cuda()
                else fluid.CPUPlace()
            )
1318 1319
            exe = fluid.Executor(place)
            static_res1, static_res2, static_res3 = exe.run(
1320 1321
                fetch_list=[out_1, out_2, out_3]
            )
1322 1323 1324 1325 1326

        with self.dynamic_graph():
            index_1 = layers.fill_constant(shape=[1], dtype='int32', value=1)
            index_2 = layers.fill_constant(shape=[1], dtype='int32', value=2)

1327
            out_1 = paddle.static.nn.switch_case(
1328 1329 1330 1331
                branch_index=index_1,
                branch_fns={1: fn_1, 2: fn_2},
                default=fn_3,
            )
1332
            out_2 = paddle.static.nn.switch_case(
1333 1334 1335 1336
                branch_index=index_2,
                branch_fns=[(1, fn_1), (2, fn_2)],
                default=fn_3,
            )
1337
            out_3 = paddle.static.nn.switch_case(
1338 1339 1340
                branch_index=index_2,
                branch_fns=[(0, fn_1), (4, fn_2), (7, fn_3)],
            )
1341 1342 1343 1344 1345

            dynamic_res1 = out_1.numpy()
            dynamic_res2 = out_2.numpy()
            dynamic_res3 = out_3.numpy()

1346 1347 1348
        np.testing.assert_array_equal(static_res1, dynamic_res1)
        np.testing.assert_array_equal(static_res2, dynamic_res2)
        np.testing.assert_array_equal(static_res3, dynamic_res3)
1349

1350 1351 1352 1353
    def test_crop_tensor(self):
        with self.static_graph():
            x = fluid.layers.data(name="x1", shape=[6, 5, 8])

1354 1355 1356 1357 1358 1359
            dim1 = fluid.layers.data(
                name="dim1", shape=[1], append_batch_size=False
            )
            dim2 = fluid.layers.data(
                name="dim2", shape=[1], append_batch_size=False
            )
1360
            crop_shape1 = (1, 2, 4, 4)
1361 1362 1363
            crop_shape2 = fluid.layers.data(
                name="crop_shape", shape=[4], append_batch_size=False
            )
1364 1365
            crop_shape3 = [-1, dim1, dim2, 4]
            crop_offsets1 = [0, 0, 1, 0]
1366 1367 1368
            crop_offsets2 = fluid.layers.data(
                name="crop_offset", shape=[4], append_batch_size=False
            )
1369 1370
            crop_offsets3 = [0, dim1, dim2, 0]

1371 1372 1373
            out1 = paddle.crop(x, shape=crop_shape1, offsets=crop_offsets1)
            out2 = paddle.crop(x, shape=crop_shape2, offsets=crop_offsets2)
            out3 = paddle.crop(x, shape=crop_shape3, offsets=crop_offsets3)
1374 1375 1376 1377 1378

            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
            self.assertIsNotNone(out3)

1379 1380 1381
    def test_shard_index(self):
        with self.static_graph():
            x = fluid.layers.data(name="label", shape=[4, 1], dtype='int64')
1382
            shard_label = paddle.shard_index(
1383 1384
                input=x, index_num=20, nshards=2, shard_id=0
            )
1385 1386 1387

        self.assertIsNotNone(shard_label)

1388 1389 1390 1391 1392 1393
    def test_accuracy(self):
        x = np.random.rand(3, 32, 32).astype("float32")
        y = np.array([[1], [0], [1]])
        with self.static_graph():
            data = fluid.data(name="input", shape=[-1, 32, 32], dtype="float32")
            label = fluid.data(name="label", shape=[-1, 1], dtype="int")
C
Charles-hit 已提交
1394 1395
            data_new = paddle.reshape(data, [3, 32 * 32])
            fc_out = paddle.nn.Linear(32 * 32, 10)(data_new)
1396
            predict = paddle.nn.functional.softmax(fc_out)
1397
            result = paddle.static.accuracy(input=predict, label=label, k=5)
1398 1399 1400 1401
            place = fluid.CPUPlace()
            exe = fluid.Executor(place)

            exe.run(fluid.default_startup_program())
L
Leo Chen 已提交
1402 1403
            # x = np.random.rand(3, 32, 32).astype("float32")
            # y = np.array([[1], [0], [1]])
1404 1405 1406
            static_out = exe.run(
                feed={"input": x, "label": y}, fetch_list=result[0]
            )
1407

L
Leo Chen 已提交
1408
        with self.dynamic_graph(force_to_use_cpu=True):
1409 1410
            data = base.to_variable(x)
            label = base.to_variable(y)
C
Charles-hit 已提交
1411 1412
            data_new = paddle.reshape(data, [3, 32 * 32])
            fc_out = paddle.nn.Linear(32 * 32, 10)(data_new)
1413
            predict = paddle.nn.functional.softmax(fc_out)
1414 1415 1416
            dynamic_out = paddle.static.accuracy(
                input=predict, label=label, k=5
            )
1417

1418
        np.testing.assert_array_equal(static_out[0], dynamic_out.numpy())
1419

Y
Yu Yang 已提交
1420

1421
class TestBook(LayerTest):
H
hong 已提交
1422 1423
    def setUp(self):
        self.only_static_set = set({"make_word_embedding"})
1424 1425 1426 1427 1428 1429 1430
        self.not_compare_static_dygraph_set = set(
            {
                "make_gaussian_random",
                "make_kldiv_loss",
                "make_uniform_random_batch_size_like",
            }
        )
1431
        self.all_close_compare = set({"make_spectral_norm"})
H
hong 已提交
1432

1433
    def test_all_layers(self):
1434 1435 1436 1437 1438
        attrs = (getattr(self, name) for name in dir(self))
        methods = filter(inspect.ismethod, attrs)
        for method in methods:
            if not method.__name__.startswith('make_'):
                continue
M
minqiyang 已提交
1439 1440 1441
            self._low_data_bound = 0
            self._high_data_bound = 2
            self._batch_size = 2
1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453
            self._feed_dict = {}
            self._force_to_use_cpu = False
            with self.static_graph():
                static_var = method()
                if isinstance(static_var, tuple):
                    static_var = static_var[0]

                if static_var is not None:
                    fetch_list = [static_var.name]
                    static_result = self.get_static_graph_result(
                        feed=self._feed_dict,
                        fetch_list=fetch_list,
1454 1455
                        force_to_use_cpu=self._force_to_use_cpu,
                    )
H
hong 已提交
1456

1457 1458
                else:
                    continue
H
hong 已提交
1459 1460
            if method.__name__ in self.only_static_set:
                continue
1461 1462 1463 1464 1465

            with self.dynamic_graph(self._force_to_use_cpu):
                dy_result = method()
                if isinstance(dy_result, tuple):
                    dy_result = dy_result[0]
1466
                dy_result_value = dy_result.numpy()
1467

1468
            if method.__name__ in self.all_close_compare:
1469 1470 1471 1472 1473 1474
                np.testing.assert_allclose(
                    static_result[0],
                    dy_result_value,
                    rtol=1e-05,
                    atol=0,
                    err_msg='Result of function [{}] compare failed'.format(
1475 1476 1477
                        method.__name__
                    ),
                )
1478 1479
                continue

H
hong 已提交
1480
            if method.__name__ not in self.not_compare_static_dygraph_set:
1481 1482 1483 1484
                np.testing.assert_array_equal(
                    static_result[0],
                    dy_result_value,
                    err_msg='Result of function [{}] not equal'.format(
1485 1486 1487
                        method.__name__
                    ),
                )
1488 1489 1490 1491

    def _get_np_data(self, shape, dtype, append_batch_size=True):
        np.random.seed(self.seed)
        if append_batch_size:
M
minqiyang 已提交
1492
            shape = [self._batch_size] + shape
1493 1494 1495 1496 1497
        if dtype == 'float32':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'float64':
            return np.random.random(shape).astype(dtype)
        elif dtype == 'int32':
1498 1499 1500
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)
1501
        elif dtype == 'int64':
1502 1503 1504 1505 1506 1507 1508
            return np.random.randint(
                self._low_data_bound, self._high_data_bound, shape
            ).astype(dtype)

    def _get_data(
        self, name, shape, dtype, set_feed_dict=True, append_batch_size=True
    ):
1509
        if base.enabled():
1510 1511 1512 1513 1514
            return base.to_variable(
                value=self._get_np_data(shape, dtype, append_batch_size),
                name=name,
                zero_copy=False,
            )
1515 1516
        else:
            if set_feed_dict:
1517
                self._feed_dict[name] = self._get_np_data(
1518 1519 1520 1521 1522 1523 1524 1525
                    shape, dtype, append_batch_size
                )
            return layers.data(
                name=name,
                shape=shape,
                dtype=dtype,
                append_batch_size=append_batch_size,
            )
1526 1527

    def make_fit_a_line(self):
1528 1529 1530 1531
        with program_guard(
            fluid.default_main_program(),
            startup_program=fluid.default_startup_program(),
        ):
1532
            x = self._get_data(name='x', shape=[13], dtype='float32')
C
Charles-hit 已提交
1533
            y_predict = paddle.nn.Linear(13, 1)(x)
1534
            y = self._get_data(name='y', shape=[1], dtype='float32')
1535 1536 1537
            cost = paddle.nn.functional.square_error_cost(
                input=y_predict, label=y
            )
1538
            avg_cost = paddle.mean(cost)
1539
            return avg_cost
Y
Yu Yang 已提交
1540

1541
    def make_recognize_digits_mlp(self):
1542 1543 1544
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
1545
            # Change g_program, so the rest layers use `g_program`
1546 1547
            images = self._get_data(name='pixel', shape=[784], dtype='float32')
            label = self._get_data(name='label', shape=[1], dtype='int64')
C
Charles-hit 已提交
1548 1549 1550 1551 1552 1553 1554 1555
            hidden1 = paddle.nn.Linear(784, 128)(images)
            hidden1 = paddle.nn.functional.relu(hidden1)
            hidden2 = paddle.nn.Linear(128, 64)(hidden1)
            hidden2 = paddle.nn.functional.relu(hidden2)
            hidden1 = paddle.nn.Linear(128, 10, "sftmax.w1")(hidden1)
            hidden2 = paddle.nn.Linear(64, 10, "sftmax.w2")(hidden2)
            hidden = hidden1 + hidden2
            predict = paddle.nn.functional.softmax(hidden)
1556 1557 1558
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=label, reduction='none', use_softmax=False
            )
1559
            avg_cost = paddle.mean(cost)
1560
            return avg_cost
Y
Yu Yang 已提交
1561

1562
    def make_conv2d_transpose(self):
1563 1564 1565
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1566
            img = self._get_data(name='pixel', shape=[3, 2, 2], dtype='float32')
1567
            return paddle.static.nn.conv2d_transpose(
1568 1569
                input=img, num_filters=10, output_size=28
            )
1570

1571
    def make_recognize_digits_conv(self):
1572 1573 1574 1575 1576 1577
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            images = self._get_data(
                name='pixel', shape=[1, 28, 28], dtype='float32'
            )
1578
            label = self._get_data(name='label', shape=[1], dtype='int64')
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594
            conv_pool_1 = nets.simple_img_conv_pool(
                input=images,
                filter_size=5,
                num_filters=2,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
            conv_pool_2 = nets.simple_img_conv_pool(
                input=conv_pool_1,
                filter_size=5,
                num_filters=4,
                pool_size=2,
                pool_stride=2,
                act="relu",
            )
Y
Yu Yang 已提交
1595

C
Charles-hit 已提交
1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
            conv_pool_2_new = paddle.reshape(
                conv_pool_2,
                [
                    conv_pool_2.shape[0],
                    conv_pool_2.shape[1]
                    * conv_pool_2.shape[2]
                    * conv_pool_2.shape[3],
                ],
            )
            predict = paddle.nn.Linear(
                conv_pool_2.shape[1]
                * conv_pool_2.shape[2]
                * conv_pool_2.shape[3],
                10,
            )(conv_pool_2_new)
            predict = paddle.nn.functional.softmax(predict)
1612 1613 1614
            cost = paddle.nn.functional.cross_entropy(
                input=predict, label=label, reduction='none', use_softmax=False
            )
1615
            avg_cost = paddle.mean(cost)
1616
            return avg_cost
Y
Yu Yang 已提交
1617

1618
    def make_word_embedding(self):
1619 1620 1621
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
Y
Yu Yang 已提交
1622 1623
            dict_size = 10000
            embed_size = 32
1624
            first_word = self._get_data(name='firstw', shape=[1], dtype='int64')
1625 1626 1627
            second_word = self._get_data(
                name='secondw', shape=[1], dtype='int64'
            )
1628 1629 1630
            third_word = self._get_data(name='thirdw', shape=[1], dtype='int64')
            forth_word = self._get_data(name='forthw', shape=[1], dtype='int64')
            next_word = self._get_data(name='nextw', shape=[1], dtype='int64')
Y
Yu Yang 已提交
1631

1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656
            embed_first = layers.embedding(
                input=first_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_second = layers.embedding(
                input=second_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )

            embed_third = layers.embedding(
                input=third_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
            embed_forth = layers.embedding(
                input=forth_word,
                size=[dict_size, embed_size],
                dtype='float32',
                param_attr='shared_w',
            )
Y
Yu Yang 已提交
1657 1658 1659

            concat_embed = layers.concat(
                input=[embed_first, embed_second, embed_third, embed_forth],
1660 1661
                axis=1,
            )
Y
Yu Yang 已提交
1662

C
Charles-hit 已提交
1663 1664 1665 1666 1667
            hidden1 = paddle.static.nn.fc(
                x=concat_embed, size=256, activation='sigmoid'
            )
            predict_word = paddle.static.nn.fc(
                x=hidden1, size=dict_size, activation='softmax'
1668
            )
1669 1670 1671 1672 1673 1674
            cost = paddle.nn.functional.cross_entropy(
                input=predict_word,
                label=next_word,
                reduction='none',
                use_softmax=False,
            )
1675
            avg_cost = paddle.mean(cost)
1676
            return avg_cost
Y
Yu Yang 已提交
1677

1678
    def make_pool2d(self):
1679 1680 1681
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1682
            x = self._get_data(name='x', shape=[3, 224, 224], dtype='float32')
C
ccrrong 已提交
1683 1684
            return paddle.nn.functional.max_pool2d(
                x, kernel_size=[5, 3], stride=[1, 2], padding=(2, 1)
1685
            )
1686

K
Kaipeng Deng 已提交
1687
    def make_pool2d_infershape(self):
1688 1689 1690
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
1691
            theta = self._get_data("theta", shape=[2, 3], dtype='float32')
1692 1693 1694
            x = paddle.nn.functional.affine_grid(
                theta, out_shape=[2, 3, 244, 244]
            )
C
ccrrong 已提交
1695 1696
            return paddle.nn.functional.max_pool2d(
                x, kernel_size=[5, 3], stride=[1, 2], padding=(2, 1)
1697
            )
K
Kaipeng Deng 已提交
1698

1699
    def make_softmax(self):
1700 1701 1702
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1703
            data = self._get_data(name='data', shape=[10], dtype='float32')
C
Charles-hit 已提交
1704
            hid = paddle.nn.Linear(10, 20)(data)
1705
            return paddle.nn.functional.softmax(hid, axis=1)
D
dangqingqing 已提交
1706

1707
    @prog_scope()
1708
    def make_nce(self):
Y
Yang Yu 已提交
1709 1710
        window_size = 5
        words = []
1711
        for i in range(window_size):
Y
Yang Yu 已提交
1712
            words.append(
1713 1714 1715 1716
                self._get_data(
                    name='word_{0}'.format(i), shape=[1], dtype='int64'
                )
            )
Y
Yang Yu 已提交
1717 1718

        dict_size = 10000
M
minqiyang 已提交
1719
        label_word = int(window_size // 2) + 1
Y
Yang Yu 已提交
1720 1721

        embs = []
1722
        for i in range(window_size):
Y
Yang Yu 已提交
1723 1724 1725
            if i == label_word:
                continue

1726 1727 1728 1729 1730 1731
            emb = layers.embedding(
                input=words[i],
                size=[dict_size, 32],
                param_attr='emb.w',
                is_sparse=True,
            )
Y
Yang Yu 已提交
1732 1733 1734 1735

            embs.append(emb)

        embs = layers.concat(input=embs, axis=1)
1736
        loss = paddle.static.nn.nce(
1737 1738 1739 1740 1741 1742
            input=embs,
            label=words[label_word],
            num_total_classes=dict_size,
            param_attr='nce.w',
            bias_attr='nce.b',
        )
1743
        avg_loss = paddle.mean(loss)
1744
        return avg_loss
Y
Yang Yu 已提交
1745

1746
    def make_multiplex(self):
1747 1748 1749
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1750 1751 1752
            x1 = self._get_data(name='x1', shape=[4], dtype='float32')
            x2 = self._get_data(name='x2', shape=[4], dtype='float32')
            index = self._get_data(name='index', shape=[1], dtype='int32')
1753
            out = paddle.multiplex(inputs=[x1, x2], index=index)
1754
            return out
1755 1756

    def make_softmax_with_cross_entropy(self):
1757 1758 1759
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1760 1761
            x = self._get_data(name='x', shape=[16], dtype='float32')
            y = self._get_data(name='label', shape=[1], dtype='int64')
1762
            loss, softmax = paddle.nn.functional.softmax_with_cross_entropy(
1763 1764
                x, y, return_softmax=True
            )
1765 1766 1767
            self.assertIsNotNone(loss)
            self.assertIsNotNone(softmax)

1768
            loss = paddle.nn.functional.softmax_with_cross_entropy(x, y)
1769 1770 1771 1772 1773 1774
            self.assertIsNotNone(loss)

            x1 = self._get_data(name='x1', shape=[16, 32, 64], dtype='float32')
            y1 = self._get_data(name='label1', shape=[1, 32, 64], dtype='int64')
            y2 = self._get_data(name='label2', shape=[16, 1, 64], dtype='int64')
            y3 = self._get_data(name='label3', shape=[16, 32, 1], dtype='int64')
1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786
            loss1 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y1, axis=1
            )
            loss2 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y2, axis=2
            )
            loss3 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=3
            )
            loss4 = paddle.nn.functional.softmax_with_cross_entropy(
                x1, y3, axis=-1
            )
1787 1788 1789 1790
            self.assertIsNotNone(loss1)
            self.assertIsNotNone(loss2)
            self.assertIsNotNone(loss3)
            self.assertIsNotNone(loss4)
1791
            return loss4
1792 1793

    def make_scatter(self):
1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x', shape=[3, 3], append_batch_size=False, dtype='float32'
            )
            idx = self._get_data(
                name='idx', shape=[2], append_batch_size=False, dtype='int32'
            )
            updates = self._get_data(
                name='updates',
                shape=[2, 3],
                append_batch_size=False,
                dtype='float32',
            )
1809
            out = paddle.scatter(x, index=idx, updates=updates)
1810
            return out
Y
yangyaming 已提交
1811

1812 1813 1814
    def make_one_hot(self):
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
1815
            one_hot_label = paddle.nn.functional.one_hot(label, 10)
1816
            return one_hot_label
1817

1818 1819 1820 1821 1822
    def make_label_smooth(self):
        # TODO(minqiyang): support gpu ut
        self._force_to_use_cpu = True
        with fluid.framework._dygraph_place_guard(place=fluid.CPUPlace()):
            label = self._get_data(name="label", shape=[1], dtype="int32")
1823
            one_hot_label = paddle.nn.functional.one_hot(label, 10)
1824
            smooth_label = F.label_smooth(label=one_hot_label, epsilon=0.1)
1825
            return smooth_label
1826

1827
    def make_topk(self):
1828 1829 1830
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1831
            data = self._get_data(name="label", shape=[200], dtype="float32")
1832
            values, indices = paddle.topk(data, k=5)
1833 1834
            return values
            return indices
J
jerrywgz 已提交
1835

1836
    def make_l2_normalize(self):
1837 1838 1839
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1840
            x = self._get_data(name='x', shape=[8, 7, 10], dtype="float32")
1841
            output = paddle.nn.functional.normalize(x, axis=1)
1842
            return output
1843

1844
    def make_shape(self):
1845 1846 1847 1848 1849 1850
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
2
201716010711 已提交
1851
            out = paddle.shape(input)
1852
            return out
B
Bai Yifan 已提交
1853

1854
    def make_pad2d(self):
1855 1856 1857 1858 1859 1860
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 100, 100], dtype="float32"
            )
傅剑寒 已提交
1861 1862 1863

            tmp_pad = paddle.nn.Pad2D(
                padding=[1, 2, 3, 4],
1864 1865 1866 1867
                mode='reflect',
                data_format='NCHW',
                name="shape",
            )
傅剑寒 已提交
1868
            out = tmp_pad(input)
1869
            return out
W
whs 已提交
1870

K
Kaipeng Deng 已提交
1871
    def make_mish(self):
1872 1873 1874
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
K
Kaipeng Deng 已提交
1875
            input = self._get_data(name="input", shape=[16], dtype="float32")
1876
            out = paddle.nn.functional.mish(input, name='mish')
1877
            return out
K
Kaipeng Deng 已提交
1878

1879
    def make_cross_entropy(self):
1880 1881 1882
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1883 1884
            x = self._get_data(name="x", shape=[30, 10], dtype="float32")
            label = self._get_data(name="label", shape=[30, 1], dtype="int64")
1885
            mode = 'channel'
1886 1887 1888 1889 1890 1891 1892 1893
            out = paddle.nn.functional.cross_entropy(
                x,
                label,
                soft_label=False,
                ignore_index=4,
                reduction='none',
                use_softmax=False,
            )
1894
            return out
1895

1896
    def make_uniform_random_batch_size_like(self):
1897 1898 1899 1900 1901 1902
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
1903
            out = random.uniform_random_batch_size_like(input, [-1, 11])
1904
            return out
G
fix  
gongweibao 已提交
1905

1906
    def make_gaussian_random(self):
1907 1908 1909
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1910
            out = random.gaussian(shape=[20, 30])
1911
            return out
G
fix  
gongweibao 已提交
1912

1913
    def make_sum(self):
1914 1915 1916 1917 1918 1919
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[13, 11], dtype='float32'
            )
G
fix  
gongweibao 已提交
1920

1921
            out = paddle.add_n(input)
1922
            return out
G
fix  
gongweibao 已提交
1923

1924
    def make_slice(self):
G
fix  
gongweibao 已提交
1925 1926 1927 1928
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        axes = [0, 1, 2]

1929 1930 1931 1932 1933 1934
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
G
fix  
gongweibao 已提交
1935

2
201716010711 已提交
1936
            out = paddle.slice(input, axes=axes, starts=starts, ends=ends)
1937
            return out
G
merge  
gongweibao 已提交
1938

1939
    def make_scale_variable(self):
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = self._get_data(
                name="input", shape=[3, 4, 5, 6], dtype='float32'
            )
            scale_var = self._get_data(
                name="scale",
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
2
201716010711 已提交
1952
            out = paddle.scale(input, scale=scale_var)
1953 1954
            return out

1955
    def make_bilinear_tensor_product_layer(self):
1956 1957 1958
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
1959 1960 1961
            data = self._get_data(name='data', shape=[4], dtype="float32")

            theta = self._get_data(name="theta", shape=[5], dtype="float32")
1962 1963 1964
            out = paddle.static.nn.common.bilinear_tensor_product(
                data, theta, 6
            )
1965
            return out
1966 1967

    def make_batch_norm(self):
1968 1969 1970 1971 1972 1973
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
1974
            out = paddle.static.nn.batch_norm(data)
1975
            return out
1976

1977
    def make_batch_norm_momentum_variable(self):
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            data = self._get_data(
                name='data', shape=[32, 128, 128], dtype="float32"
            )
            momentum = self._get_data(
                name='momentum',
                shape=[1],
                dtype='float32',
                append_batch_size=False,
            )
1990
            out = paddle.static.nn.batch_norm(data, momentum=momentum)
1991
            return out
1992

1993
    def make_range(self):
1994 1995 1996
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
C
ccrrong 已提交
1997 1998 1999
            paddle.arange(0, 10, 2, 'int32')
            paddle.arange(0.1, 10.0, 0.2, 'float32')
            paddle.arange(0.1, 10.0, 0.2, 'float64')
2000 2001 2002
            start = layers.fill_constant(shape=[1], value=0.1, dtype="float32")
            end = layers.fill_constant(shape=[1], value=10.0, dtype="float32")
            step = layers.fill_constant(shape=[1], value=0.2, dtype="float32")
C
ccrrong 已提交
2003
            y = paddle.arange(start, end, step, 'float64')
2004 2005 2006
            return y

    def make_spectral_norm(self):
2007 2008 2009 2010 2011 2012 2013 2014 2015
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            weight = self._get_data(
                name='weight',
                shape=[2, 3, 32, 32],
                dtype="float32",
                append_batch_size=False,
            )
2016
            out = paddle.static.nn.spectral_norm(weight, dim=1, power_iters=1)
2017
            return out
2018 2019

    def make_kldiv_loss(self):
2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            x = self._get_data(
                name='x',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
            target = self._get_data(
                name='target',
                shape=[32, 128, 128],
                dtype="float32",
                append_batch_size=False,
            )
2035 2036 2037
            loss = paddle.nn.functional.kl_div(
                input=x, label=target, reduction='batchmean'
            )
2038
            return loss
2039

M
minqiyang 已提交
2040
    def make_pixel_shuffle(self):
2041 2042 2043
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
M
minqiyang 已提交
2044
            x = self._get_data(name="X", shape=[9, 4, 4], dtype="float32")
2045
            out = paddle.nn.functional.pixel_shuffle(x, upscale_factor=3)
2046
            return out
M
minqiyang 已提交
2047

R
ruri 已提交
2048
    def make_mse_loss(self):
2049 2050 2051
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
R
ruri 已提交
2052 2053
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2054
            out = paddle.nn.functional.mse_loss(input=x, label=y)
2055
            return out
R
ruri 已提交
2056

2057
    def make_square_error_cost(self):
2058 2059 2060
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
2061 2062
            x = self._get_data(name="X", shape=[1], dtype="float32")
            y = self._get_data(name="Y", shape=[1], dtype="float32")
2063
            out = paddle.nn.functional.square_error_cost(input=x, label=y)
2064
            return out
2065

W
whs 已提交
2066
    def test_affine_grid(self):
2067
        with self.static_graph():
W
whs 已提交
2068
            data = layers.data(name='data', shape=[2, 3, 3], dtype="float32")
2069
            out = paddle.argsort(x=data, axis=1)
W
whs 已提交
2070 2071

            theta = layers.data(name="theta", shape=[2, 3], dtype="float32")
2072
            out_shape = layers.data(name="out_shape", shape=[-1], dtype="int32")
2073 2074
            data_0 = paddle.nn.functional.affine_grid(theta, out_shape)
            data_1 = paddle.nn.functional.affine_grid(theta, [5, 3, 28, 28])
W
whs 已提交
2075 2076 2077

            self.assertIsNotNone(data_0)
            self.assertIsNotNone(data_1)
D
dengkaipeng 已提交
2078

W
wangchaochaohu 已提交
2079 2080 2081 2082 2083 2084 2085
    def test_stridedslice(self):
        axes = [0, 1, 2]
        starts = [1, 0, 2]
        ends = [3, 3, 4]
        strides = [1, 1, 1]
        with self.static_graph():
            x = layers.data(name="x", shape=[245, 30, 30], dtype="float32")
2
201716010711 已提交
2086
            out = paddle.strided_slice(
2087 2088
                x, axes=axes, starts=starts, ends=ends, strides=strides
            )
W
wangchaochaohu 已提交
2089 2090
            return out

2091 2092
    def test_fill_constant_batch_size_like(self):
        with self.static_graph():
2093 2094 2095 2096 2097 2098
            like = fluid.layers.fill_constant(
                shape=[1, 200], value=10, dtype='int64'
            )
            out = layers.fill_constant_batch_size_like(
                input=like, shape=[2, 3300], value=1315454564656, dtype='int64'
            )
2099 2100
            return out

2101 2102 2103 2104
    def test_sequence_expand(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10], dtype='float32')
2105 2106 2107 2108
            y = layers.data(
                name='y', shape=[10, 20], dtype='float32', lod_level=2
            )
            return layers.sequence_expand(x=x, y=y, ref_level=1)
2109

2110 2111 2112 2113 2114
    def test_sequence_reshape(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8], dtype='float32', lod_level=1)
            out = layers.sequence_reshape(input=x, new_dim=16)
2115
            return out
2116

2117 2118 2119 2120
    def test_sequence_unpad(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[10, 5], dtype='float32')
2121
            length = layers.data(name='length', shape=[], dtype='int64')
2122
            return layers.sequence_unpad(x=x, length=length)
2123

2124 2125 2126
    def test_sequence_softmax(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2127 2128 2129
            seq_data = layers.data(
                name='seq_data', shape=[10, 10], dtype='float32', lod_level=1
            )
C
Charles-hit 已提交
2130
            seq = paddle.static.nn.fc(x=seq_data, size=20)
2131
            return layers.sequence_softmax(seq)
2132

2133 2134 2135 2136
    def test_sequence_unsqueeze(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[8, 2], dtype='float32')
2137
            out = paddle.unsqueeze(x, axis=[1])
2138
            return out
2139

2140 2141 2142
    def test_sequence_scatter(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159
            x = layers.data(
                name='x', shape=[3, 6], append_batch_size=False, dtype='float32'
            )
            idx = layers.data(
                name='idx',
                shape=[12, 1],
                append_batch_size=False,
                dtype='int32',
                lod_level=1,
            )
            updates = layers.data(
                name='updates',
                shape=[12, 1],
                append_batch_size=False,
                dtype='float32',
                lod_level=1,
            )
2160
            out = layers.sequence_scatter(input=x, index=idx, updates=updates)
2161
            return out
W
whs 已提交
2162

2163 2164 2165 2166
    def test_sequence_slice(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            import numpy as np
2167 2168 2169 2170

            seqs = layers.data(
                name='x', shape=[10, 5], dtype='float32', lod_level=1
            )
2171 2172
            offset = layers.assign(input=np.array([[0, 1]]).astype('int32'))
            length = layers.assign(input=np.array([[2, 1]]).astype('int32'))
2173 2174 2175 2176
            out = layers.sequence_slice(
                input=seqs, offset=offset, length=length
            )
            return out
W
whs 已提交
2177

Z
zhoushiyu 已提交
2178 2179 2180
    def test_shuffle_batch(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2181 2182 2183
            x = layers.data(
                name='X', shape=[4, 50], dtype='float32', lod_level=0
            )
Z
zhoushiyu 已提交
2184 2185 2186 2187 2188
            out1 = fluid.contrib.layers.shuffle_batch(x)
            default_main_program().random_seed = 1000
            out2 = fluid.contrib.layers.shuffle_batch(x)
            self.assertIsNotNone(out1)
            self.assertIsNotNone(out2)
2189
            return out1
Z
zhoushiyu 已提交
2190

2191 2192 2193 2194
    def test_partial_sum(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
2195 2196 2197 2198
            sum = fluid.contrib.layers.partial_sum(
                [x, y], start_index=0, length=2
            )
            return sum
2199

S
ShenLiang 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208
    def test_batch_fc(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[16, 2, 3], dtype="float32")
            out = fluid.contrib.layers.batch_fc(
                input=input,
                param_size=[16, 3, 10],
                param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="w_0",
2209 2210
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
S
ShenLiang 已提交
2211 2212 2213 2214
                bias_size=[16, 10],
                bias_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="b_0",
2215 2216 2217 2218 2219
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                act="relu",
            )
        return out
S
ShenLiang 已提交
2220

S
ShenLiang 已提交
2221 2222 2223
    def test_rank_attention(self):
        with self.static_graph():
            input = fluid.data(name="input", shape=[None, 2], dtype="float32")
2224 2225 2226
            rank_offset = fluid.data(
                name="rank_offset", shape=[None, 7], dtype="int32"
            )
S
ShenLiang 已提交
2227 2228 2229 2230 2231 2232 2233
            out = fluid.contrib.layers.rank_attention(
                input=input,
                rank_offset=rank_offset,
                rank_param_shape=[18, 3],
                rank_param_attr=fluid.ParamAttr(
                    learning_rate=1.0,
                    name="ubm_rank_param.w_0",
2234 2235 2236 2237 2238
                    initializer=fluid.initializer.Xavier(uniform=False),
                ),
                max_rank=3,
            )
            return out
S
ShenLiang 已提交
2239

2240 2241 2242 2243 2244 2245 2246 2247 2248 2249
    def test_sequence_enumerate(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name="input", shape=[1], dtype='int32', lod_level=1)
            out = layers.sequence_enumerate(input=x, win_size=2, pad_value=0)

    def test_row_conv(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
            x = layers.data(name='x', shape=[16], dtype='float32', lod_level=1)
2250
            out = paddle.static.nn.row_conv(input=x, future_context_size=2)
2251
            return out
2252 2253 2254 2255

    def test_simple_conv2d(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
2256 2257 2258
            images = layers.data(
                name='pixel', shape=[3, 48, 48], dtype='float32'
            )
2259
            return paddle.static.nn.conv2d(
2260 2261
                input=images, num_filters=3, filter_size=[4, 4]
            )
2262 2263 2264 2265 2266

    def test_squeeze(self):
        # TODO(minqiyang): dygraph do not support layers with param now
        with self.static_graph():
            x = layers.data(name='x', shape=[1, 1, 4], dtype='float32')
2267
            out = paddle.squeeze(x, axis=[2])
2268
            return out
2269 2270 2271 2272

    def test_flatten(self):
        # TODO(minqiyang): dygraph do not support op without kernel now
        with self.static_graph():
2273 2274 2275 2276 2277 2278
            x = layers.data(
                name='x',
                append_batch_size=False,
                shape=[4, 4, 3],
                dtype="float32",
            )
2279
            out = paddle.flatten(x, 1, -1, name="flatten")
2280
            return out
2281

Z
zhoukunsheng 已提交
2282 2283 2284
    def test_linspace(self):
        program = Program()
        with program_guard(program):
2285
            out = paddle.linspace(20, 10, 5, 'float64')
Z
zhoukunsheng 已提交
2286 2287 2288
            self.assertIsNotNone(out)
        print(str(program))

2289 2290 2291
    def test_unfold(self):
        with self.static_graph():
            x = layers.data(name='x', shape=[3, 20, 20], dtype='float32')
2292
            out = paddle.nn.functional.unfold(x, [3, 3], 1, 1, 1)
2293
            return out
2294

2295 2296 2297 2298
    def test_partial_concat(self):
        with self.static_graph():
            x = fluid.data(name="x", shape=[None, 3], dtype="float32")
            y = fluid.data(name="y", shape=[None, 3], dtype="float32")
2299 2300 2301 2302 2303 2304
            concat1 = fluid.contrib.layers.partial_concat(
                [x, y], start_index=0, length=2
            )
            concat2 = fluid.contrib.layers.partial_concat(
                x, start_index=0, length=-1
            )
2305 2306
            return concat1, concat2

2307
    def test_addmm(self):
2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322
        with program_guard(
            fluid.default_main_program(), fluid.default_startup_program()
        ):
            input = layers.data(
                name='input_data',
                shape=[3, 3],
                append_batch_size=False,
                dtype='float32',
            )
            x = layers.data(
                name='x', shape=[3, 2], append_batch_size=False, dtype='float32'
            )
            y = layers.data(
                name='y', shape=[2, 3], append_batch_size=False, dtype='float32'
            )
2323 2324

            out = paddle.addmm(input=input, x=x, y=y)
2325
            return out
2326

2327 2328 2329
    def test_warpctc_with_padding(self):
        # TODO(minqiyang): dygraph do not support lod now
        with self.static_graph():
2330
            input_length = paddle.static.data(
2331 2332
                name='logits_length', shape=[11], dtype='int64'
            )
2333
            label_length = paddle.static.data(
2334 2335
                name='labels_length', shape=[12], dtype='int64'
            )
2336 2337 2338 2339
            label = paddle.static.data(
                name='label', shape=[12, 1], dtype='int32'
            )
            predict = paddle.static.data(
2340 2341
                name='predict', shape=[4, 4, 8], dtype='float32'
            )
2342 2343 2344 2345 2346 2347
            output = paddle.nn.functional.ctc_loss(
                log_probs=predict,
                labels=label,
                input_lengths=input_length,
                label_lengths=label_length,
                reduction='none',
2348 2349
            )
            return output
2350

Y
Yu Yang 已提交
2351

2352 2353
class ExampleNet(paddle.nn.Layer):
    def __init__(self):
2354
        super().__init__()
2355
        self.weight = self.create_parameter(
2356 2357
            shape=[1, 1], attr=paddle.ParamAttr(trainable=False)
        )
2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370

    def forward(self):
        # only for test parameter trainable attr
        pass


class TestLayerParameterTrainableSet(unittest.TestCase):
    def test_layer_parameter_set(self):
        with fluid.dygraph.guard():
            net = ExampleNet()
            self.assertFalse(net.weight.trainable)


2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387
class TestLayerTrainingAttribute(unittest.TestCase):
    def test_set_train_eval_in_dynamic_mode(self):
        with fluid.dygraph.guard():
            net = paddle.nn.Dropout()
            net.train()
            self.assertTrue(net.training)
            net.eval()
            self.assertFalse(net.training)

    def test_set_train_eval_in_static_mode(self):
        net = paddle.nn.Dropout()
        net.train()
        self.assertTrue(net.training)
        net.eval()
        self.assertFalse(net.training)


J
Jiabin Yang 已提交
2388 2389
class MyLayer(paddle.nn.Layer):
    def __init__(self):
2390
        super().__init__()
J
Jiabin Yang 已提交
2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401
        self._linear = paddle.nn.Linear(1, 1)
        self._dropout = paddle.nn.Dropout(p=0.5)

    def forward(self, input):
        temp = self._linear(input)
        temp = self._dropout(temp)
        return temp


class MySuperLayer(paddle.nn.Layer):
    def __init__(self):
2402
        super().__init__()
J
Jiabin Yang 已提交
2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417
        self._mylayer = MyLayer()

    def forward(self, input):
        temp = self._mylayer(input)
        return temp


class TestSubLayerCount(unittest.TestCase):
    def test_sublayer(self):
        with fluid.dygraph.guard():
            mySuperlayer = MySuperLayer()
            self.assertTrue(len(mySuperlayer.sublayers()) == 3)
            self.assertTrue(len(mySuperlayer.sublayers(include_self=True)) == 4)


Y
Yu Yang 已提交
2418
if __name__ == '__main__':
2419
    paddle.enable_static()
Y
Yu Yang 已提交
2420
    unittest.main()