Trainer.cpp 22.0 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Trainer.h"

#include <fenv.h>
#include <stdio.h>

#include <iostream>
#include <iomanip>
#include <sstream>
#include <limits>

#include <google/protobuf/text_format.h>

#include "paddle/utils/PythonUtil.h"
#include "paddle/utils/Stat.h"
#include "paddle/utils/Util.h"
L
liaogang 已提交
30
#include "paddle/utils/Excepts.h"
Z
zhangjinchao01 已提交
31 32 33 34 35 36 37 38 39 40 41
#include "paddle/utils/GlobalConstants.h"

#include "paddle/gserver/gradientmachines/NeuralNetwork.h"
#include "paddle/gserver/gradientmachines/GradientMachineMode.h"
#include "paddle/gserver/layers/ValidationLayer.h"
#include "TesterConfig.h"
#include "ThreadParameterUpdater.h"
#include "RemoteParameterUpdater.h"
#include "TrainerConfigHelper.h"

P_DEFINE_string(config, "", "Trainer config file");
42 43
P_DEFINE_int32(test_period,
               0,
Z
zhangjinchao01 已提交
44 45 46 47 48 49 50 51
               "Run test every so many train batches."
               " 0 for testing after each pass."
               " If not 0, test log_period batches."
               " If 0, test on all test data");

P_DEFINE_bool(local, true, "Train in local mode or not");

P_DEFINE_bool(
52 53
    test_all_data_in_one_period,
    false,
Z
zhangjinchao01 已提交
54 55 56
    "true will test all data in one test peroid."
    "Otherwise test (batch_size * log_peroid) data in one test period.");

57 58
P_DEFINE_int32(average_test_period,
               0,
Z
zhangjinchao01 已提交
59 60 61 62 63
               "Do test on average parameter every so"
               " many batches. MUST be devided by FLAGS_log_period."
               " Default 0 means do not test average parameter");

P_DEFINE_int32(saving_period, 1, "Save parameteres every so many passes");
64 65
P_DEFINE_int64(saving_period_by_batches,
               0,
Z
zhangjinchao01 已提交
66 67
               "Save parameters every so many batches in one pass");
P_DEFINE_string(save_dir, "", "Directory for saving model parameter");
68 69
P_DEFINE_int32(start_pass,
               0,
Z
zhangjinchao01 已提交
70 71
               "Start training from this pass. "
               "Will load parameter from the previous pass");
72 73
P_DEFINE_int32(test_pass,
               -1,
Z
zhangjinchao01 已提交
74 75 76 77 78 79 80
               "Will load parameter start from this pass to test");
P_DEFINE_int32(test_wait, 0, "Waiting for pass parameter if not exist");
P_DEFINE_bool(with_cost, true, "enable cost layer or not");
P_DEFINE_bool(distribute_test, false, "test in distribute mode");

P_DEFINE_int32(num_passes, 100, "train for so many passes");

81 82
P_DEFINE_string(config_args,
                "",
Z
zhangjinchao01 已提交
83 84 85
                "arguments passed to config file."
                "Format: key1=value1,key2=value2");

86 87
P_DEFINE_bool(save_only_one,
              false,
Z
zhangjinchao01 已提交
88 89 90
              "Save only parameters in last pass, remove previous.");

P_DEFINE_string(feat_file, "", "File name of extracted feature.");
91 92
P_DEFINE_string(predict_output_dir,
                "",
Z
zhangjinchao01 已提交
93
                "Directory that saves the predicted results of output layers");
94 95
P_DEFINE_string(model_list,
                "",
Z
zhangjinchao01 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109
                "File that saves the model list when evaluation");

namespace paddle {

void Trainer::init(int argc, char** argv) {
  initMain(argc, argv);
  initPython(argc, argv);

  auto config = TrainerConfigHelper::createFromFlagConfig();
  feenableexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW);

  init(config);
}

110
void Trainer::init(const std::shared_ptr<TrainerConfigHelper>& config,
Z
zhangjinchao01 已提交
111
                   bool testing,
112 113 114
                   const std::shared_ptr<GradientMachine>& gradientMachine,
                   const std::shared_ptr<DataProvider>& dataProvider,
                   const std::shared_ptr<DataProvider>& testDataProvider) {
Z
zhangjinchao01 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
  this->stats_ = std::make_shared<TrainerStats>();

  config_ = config;

  config_->updateConfigFromFlags();

  testing_ = testing;

  // in testing, mode_ may GradientMachine::kTesting or
  // GradientMachine::kSgdSparseCpuTraining

  if (FLAGS_local) {
    CHECK(!FLAGS_loadsave_parameters_in_pserver)
        << "local and loadsave_parameters_in_pserver can not both true";
    if (config_->getOptConfig().use_sparse_remote_updater()) {
      config_->disableRemoteSparseUpdaterForEachParams();
      LOG(INFO) << "ignore sparse_remote_update=true due to  --local=true";
    }
  }
  if (FLAGS_loadsave_parameters_in_pserver) {
    CHECK(config_->getOptConfig().use_sparse_remote_updater())
        << "no parameter to load from pserver, please check network config";
  }
  if (testing && !FLAGS_loadsave_parameters_in_pserver) {
    if (config_->getOptConfig().use_sparse_remote_updater()) {
      config_->disableRemoteSparseUpdater();
      LOG(INFO) << "because parameter is loaded local,"
                << "tester ignore sparse_remote_update flag";
    }
  }

  CHECK(TrainAlgorithm::isValid(config_->getOptConfig().algorithm()))
      << "invalid algorithm configuration: "
      << config_->getOptConfig().algorithm();

  bool useSparseUpdater = false;
  for (auto& paraConfig : config_->getModelConfig().parameters()) {
    if (paraConfig.sparse_update() || paraConfig.sparse_remote_update()) {
      useSparseUpdater = true;
    }
  }

  if (testing) {
    LOG(INFO) << "trainer: in testing mode";
    if (config_->getOptConfig().use_sparse_remote_updater() ||
        FLAGS_trainer_count > 1) {
      mode_ = GradientMachine::kSgdSparseCpuTraining;
      LOG(INFO) << "trainer mode: SgdSparseCpuTraining";
    } else {
      mode_ = GradientMachine::kTesting;
      LOG(INFO) << "trainer mode: Testing";
    }
  } else if (IGradientMachineMode::tryGetMode(
168 169 170 171 172
                 (int*)&mode_,
                 config_->getOptConfig().algorithm(),
                 FLAGS_trainer_count,
                 FLAGS_local,
                 FLAGS_use_gpu)) {
Z
zhangjinchao01 已提交
173 174
    LOG(INFO) << "Custom trainer mode.";
  } else if ((config_->getOptConfig().algorithm() == TrainAlgorithm::SGD ||
175 176 177
              config_->getOptConfig().algorithm() ==
                  TrainAlgorithm::AsyncSGD) &&
             useSparseUpdater) {
Z
zhangjinchao01 已提交
178 179 180 181 182 183 184 185
    mode_ = GradientMachine::kSgdSparseCpuTraining;
    LOG(INFO) << "trainer mode: SgdSparseCpuTraining";
  } else {
    mode_ = GradientMachine::kNormal;
    LOG(INFO) << "trainer mode: Normal";
  }

  // initialize trainer internal
186 187
  trainerInternal_.init(config_,
                        gradientMachine,
Z
zhangjinchao01 已提交
188
                        TrainerInternalConfig::createFromMode(mode_),
189 190
                        stats_,
                        testing);
Z
zhangjinchao01 已提交
191
  std::unique_ptr<ParameterUtilConfig> paramConfig(
192 193 194 195
      new ParameterUtilConfig(FLAGS_save_only_one,
                              FLAGS_saving_period,
                              FLAGS_loadsave_parameters_in_pserver,
                              FLAGS_config));
Z
zhangjinchao01 已提交
196 197

  paramUtil_.reset(
198 199 200 201
      new paddle::ParameterUtil(config_,
                                std::move(paramConfig),
                                trainerInternal_.getGradientMachine(),
                                trainerInternal_.getParameterUpdater()));
Z
zhangjinchao01 已提交
202

203 204 205
  bool gpuData =
      FLAGS_use_gpu && (!FLAGS_parallel_nn) &&
      (!IGradientMachineMode::dataMustInCpu(mode_, FLAGS_trainer_count));
Z
zhangjinchao01 已提交
206 207

  dataProvider_ = dataProvider;
X
xuwei06 已提交
208
  if (!dataProvider_ && config_->hasDataConfig() && !testing_) {
209
    dataProvider_.reset(DataProvider::create(*config_, *config_, gpuData));
Z
zhangjinchao01 已提交
210
  }
E
emailweixu 已提交
211 212
  if (!testDataProvider_) {
    // No evaluator_ if there is testDataProvider but no dataProvider.
Z
zhangjinchao01 已提交
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    evaluator_.reset(trainerInternal_.getGradientMachine()->makeEvaluator());
    currentEvaluator_.reset(
        trainerInternal_.getGradientMachine()->makeEvaluator());
    if (FLAGS_average_test_period > 0 && FLAGS_trainer_id == 0 &&
        config_->getOptConfig().average_window() > 0) {
      CHECK_EQ(FLAGS_average_test_period % FLAGS_log_period, 0)
          << "FLAGS_average_test_period must be divided by FALGS_log_period";
      averageEvaluator_.reset(
          trainerInternal_.getGradientMachine()->makeEvaluator());
    }
  }

  testDataProvider_ = testDataProvider;
  if (!testDataProvider_ && config_->hasTestDataConfig()) {
    testDataProvider_.reset(
228
        DataProvider::create(config_->getTestDataConfig(), *config_, gpuData));
Z
zhangjinchao01 已提交
229 230
  }
  if (testDataProvider_) {
E
emailweixu 已提交
231
    createTester();
Z
zhangjinchao01 已提交
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258
  }

  if (!testing &&
      (trainerInternal_.getGradientMachine()->hasStaticParameters())) {
    CHECK(!FLAGS_loadsave_parameters_in_pserver)
        << "is_static and loadsave_parameters_in_pserver can not both true";
  }
  if (testing) {
    // will load per pass for tester
  } else if (paramUtil_->tryLoadParametersFromConfig()) {
    // load from config already.
  } else {
    trainerInternal_.getGradientMachine()->randParameters();
  }

  // Only non static parameters need to be updated
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  if (trainerInternal_.getParameterUpdater()) {
    trainerInternal_.getParameterUpdater()->init(parameters);

    if (FLAGS_loadsave_parameters_in_pserver && FLAGS_trainer_id == 0) {
      if (testing) {
        // will load per pass for tester
      } else if (!config_->getConfig().init_model_path().empty() &&
                 (FLAGS_local || FLAGS_trainer_id == 0)) {
        paramUtil_->loadParametersWithPath(
259 260 261
            config_->getConfig().init_model_path(),
            false /*local*/,
            true /*remote*/);
Z
zhangjinchao01 已提交
262 263 264
      } else if (config_->getConfig().start_pass() > 0 &&
                 (FLAGS_local || FLAGS_trainer_id == 0)) {
        CHECK(paramUtil_->loadParameters(config_->getConfig().start_pass() - 1,
265 266
                                         false /*local*/,
                                         true /*remote*/));
Z
zhangjinchao01 已提交
267 268 269 270 271 272 273 274 275 276 277 278
      } else {
        trainerInternal_.getParameterUpdater()->randParametersRemote();
      }
    }
  }

  // set current evaluator and evalutor
  trainerInternal_.setCurrentEvaluator(currentEvaluator_.get());
  trainerInternal_.setEvaluator(evaluator_.get());
}

void Trainer::train(size_t numPasses) {
E
emailweixu 已提交
279
  startTrain();
Z
zhangjinchao01 已提交
280 281 282 283
  for (size_t i = 0; i < numPasses; ++i) {
    if (IGradientMachineMode::trainWholeDataInOneBatch(mode_)) {
      trainOnePassBatch(config_->getConfig().start_pass() + i);
    } else {
E
emailweixu 已提交
284
      trainOnePass();
Z
zhangjinchao01 已提交
285 286 287 288 289 290
    }
    if (i < numPasses - 1) {
      dataProvider_->reset();
    }
  }

E
emailweixu 已提交
291
  finishTrain();
Z
zhangjinchao01 已提交
292 293 294
}

static double genPerturbation(real* d, real* grad, size_t dim) {
295
  auto& reng = ThreadLocalRandomEngine::get();
Z
zhangjinchao01 已提交
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
  std::uniform_real_distribution<double> dist(-1, 1);
  double gradNorm = 0, dNorm = 0;
  for (size_t i = 0; i < dim; ++i) {
    d[i] = dist(reng);
    dNorm += d[i] * d[i];
    gradNorm += grad[i] * grad[i];
  }
  if (gradNorm > 0) {
    real s = 0.5 * sqrt(gradNorm / dNorm);
    for (size_t i = 0; i < dim; ++i) {
      d[i] = s * d[i] + grad[i];
    }
  }
  double delta = 0;
  for (size_t i = 0; i < dim; ++i) {
    delta += grad[i] * d[i];
  }
  return delta;
}

real Trainer::checkGradient() {
  trainerInternal_.getGradientMachine()->start(*config_, dataProvider_);
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  DataBatch dataBatch;
  int32_t batchSize = config_->getOptConfig().batch_size();

  dataProvider_->getNextBatch(batchSize, &dataBatch);

  CHECK(dataBatch.getSize()) << "No data from data provider";
  std::vector<Argument>& inArgs = dataBatch.getStreams();
  std::vector<Argument> outArgs;

  trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
  real cost = Argument::sumCosts(outArgs);
  LOG(INFO) << "original cost=" << cost;
  trainerInternal_.getGradientMachine()->backward();

  real maxDiff = 0;
  char fill = ' ';
  for (auto& parameter : parameters) {
    CpuVector oldPara(parameter->getSize());
    CpuVector newPara(parameter->getSize());
    oldPara.copyFrom(*parameter->getBuf(PARAMETER_VALUE));
    real* newp = newPara.getData();
    real* oldp = oldPara.getData();
    CpuVector cpuGrad(*parameter->getBuf(PARAMETER_GRADIENT));
    real* grad = cpuGrad.getData();
    size_t dim = parameter->getSize();
    std::vector<real> d(dim);

    double delta = genPerturbation(d.data(), grad, dim);

    // use a step such that delta / cost is FLAGS_checkgrad_eps
    real step =
        (delta != 0) ? cost / delta * FLAGS_checkgrad_eps : FLAGS_checkgrad_eps;
    delta *= step;
    for (size_t i = 0; i < dim; ++i) {
      newp[i] = oldp[i] + step * d[i];
    }

    parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
    parameter->setValueUpdated();
    trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
    real newCost1 = Argument::sumCosts(outArgs);

    for (size_t i = 0; i < dim; ++i) {
      newp[i] = oldp[i] - step * d[i];
    }

    parameter->getBuf(PARAMETER_VALUE)->copyFrom(newPara);
    parameter->setValueUpdated();
    trainerInternal_.getGradientMachine()->forward(inArgs, &outArgs, PASS_GC);
    real newCost2 = Argument::sumCosts(outArgs);

    real trueDelta = 0.5 * (newCost1 - newCost2);
    real diff = (1e-20 + trueDelta) / (1e-20 + delta) - 1;
    LOG(INFO) << std::setiosflags(std::ios::left) << std::setfill(fill)
              << std::setw(20) << parameter->getName()
              << "step=" << std::setw(15) << step << "cost1=" << std::setw(10)
              << newCost1 << "cost2=" << std::setw(10) << newCost2
              << "true_delta=" << std::setw(15) << trueDelta
              << "analytic_delta=" << std::setw(15) << delta << "diff=" << diff
              << (std::abs(diff) > 0.01 ? " ***" : "");

    maxDiff = std::max(maxDiff, std::abs(diff));

    // restore parameter
    parameter->getBuf(PARAMETER_VALUE)->copyFrom(oldPara);
    parameter->setValueUpdated();

    fill = (fill == ' ') ? '.' : ' ';
  }
  return maxDiff;
}

E
emailweixu 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405
void Trainer::startTrain() {
  trainPassContext_.passId = config_->getConfig().start_pass();
  srand(config_->getConfig().start_pass() + 1);
  if (dataProvider_) {
    dataProvider_->reset();
  }

  if (this->testDataProvider_) {
    this->testDataProvider_->reset();
  }

  trainerInternal_.getGradientMachine()->start(*config_, dataProvider_);
}

406
void Trainer::finishTrain() { trainerInternal_.getGradientMachine()->finish(); }
E
emailweixu 已提交
407 408 409 410 411 412 413

void Trainer::startTrainPass() {
  stats_->reset();
  trainPassContext_.batchId = 0;
  trainPassContext_.avgTestCost = 0;
  trainPassContext_.numAvgTests = 0;
  trainPassContext_.passInnerId = 1;
Z
zhangjinchao01 已提交
414 415 416 417 418 419 420

  trainerInternal_.getParameterUpdater()->startPass();
  evaluator_->start();
  if (FLAGS_prev_batch_state) {
    trainerInternal_.getGradientMachine()->resetState();
    trainerInternal_.getGradientMachine()->getState(testState_);
  }
E
emailweixu 已提交
421
}
Z
zhangjinchao01 已提交
422

E
emailweixu 已提交
423 424 425 426 427 428 429
void Trainer::trainOneDataBatch(DataBatch& dataBatch) {
  int num = dataBatch.getSize();
  if (averageEvaluator_) {
    int64_t mod = trainPassContext_.batchId % FLAGS_average_test_period;
    if (mod >= FLAGS_average_test_period - FLAGS_log_period) {
      if (mod == FLAGS_average_test_period - FLAGS_log_period) {
        averageEvaluator_->start();
Z
zhangjinchao01 已提交
430
      }
E
emailweixu 已提交
431 432 433 434
      trainerInternal_.getParameterUpdater()->apply();
      if (FLAGS_prev_batch_state) {
        trainerInternal_.getGradientMachine()->getState(trainState_);
      }
435 436
      trainPassContext_.avgTestCost += tester_->forwardOneBatch(
          dataBatch, averageEvaluator_.get(), &forwardOutput_);
E
emailweixu 已提交
437 438 439 440 441
      if (FLAGS_prev_batch_state) {
        trainerInternal_.getGradientMachine()->setState(trainState_);
      }
      trainPassContext_.numAvgTests += num;
      trainerInternal_.getParameterUpdater()->restore();
Z
zhangjinchao01 已提交
442
    }
E
emailweixu 已提交
443 444 445 446
  }
  {
    REGISTER_TIMER("TrainBatch");
    trainerInternal_.trainOneBatch(
447
        trainPassContext_.batchId, dataBatch, &forwardOutput_);
E
emailweixu 已提交
448
  }
Z
zhangjinchao01 已提交
449

E
emailweixu 已提交
450
  if (averageEvaluator_ &&
451 452
      trainPassContext_.batchId % FLAGS_average_test_period ==
          FLAGS_average_test_period - 1) {
E
emailweixu 已提交
453 454
    averageEvaluator_->finish();
    LOG(INFO) << " Averaged parameter:"
455 456
              << " cost="
              << trainPassContext_.avgTestCost / trainPassContext_.numAvgTests
E
emailweixu 已提交
457 458 459 460
              << " Eval: " << *averageEvaluator_;
    trainPassContext_.numAvgTests = 0;
    trainPassContext_.avgTestCost = 0;
  }
Z
zhangjinchao01 已提交
461

E
emailweixu 已提交
462
  ++trainPassContext_.batchId;
Z
zhangjinchao01 已提交
463

E
emailweixu 已提交
464 465 466 467 468
  if (trainPassContext_.batchId % FLAGS_log_period == 0) {
    FOR_TIMING(globalStat.setThreadInfo(true));
    FOR_TIMING(globalStat.printAllStatus());
    FOR_TIMING(globalStat.reset());
  }
Z
zhangjinchao01 已提交
469

E
emailweixu 已提交
470 471 472 473
  if (testDataProvider_ && FLAGS_test_period > 0 &&
      trainPassContext_.batchId % FLAGS_test_period == 0) {
    tester_->testOnePeriod();
  }
Z
zhangjinchao01 已提交
474

E
emailweixu 已提交
475
  if (FLAGS_saving_period_by_batches > 0 &&
476 477
      trainPassContext_.batchId >
          FLAGS_saving_period_by_batches * trainPassContext_.passInnerId &&
E
emailweixu 已提交
478 479 480 481
      0 == FLAGS_trainer_id) {
    trainerInternal_.getParameterUpdater()->catchUpWith();
    if (testDataProvider_) {
      tester_->testOnePeriod();
Z
zhangjinchao01 已提交
482
    }
483 484
    paramUtil_->saveParametersOnePass(trainPassContext_.passId,
                                      trainPassContext_.passInnerId);
E
emailweixu 已提交
485
    ++trainPassContext_.passInnerId;
Z
zhangjinchao01 已提交
486
  }
E
emailweixu 已提交
487
}
Z
zhangjinchao01 已提交
488

E
emailweixu 已提交
489 490
void Trainer::finishTrainPass() {
  if (trainPassContext_.batchId == 0) {
Z
zhangjinchao01 已提交
491 492 493 494
    // This means no more data from DataProvider
    return;
  }

495 496
  trainerInternal_.finishTrainPass(trainPassContext_.passId,
                                   trainPassContext_.batchId);
Z
zhangjinchao01 已提交
497 498 499 500 501 502 503 504 505

  FOR_TIMING(globalStat.setThreadInfo(true));
  FOR_TIMING(globalStat.printAllStatus());
  FOR_TIMING(globalStat.reset());

  if (testDataProvider_) {
    tester_->testOnePeriod();
  }

506 507
  if (trainPassContext_.passId % FLAGS_saving_period == 0 &&
      FLAGS_trainer_id == 0) {
E
emailweixu 已提交
508
    paramUtil_->saveParametersOnePass(trainPassContext_.passId);
Z
zhangjinchao01 已提交
509
  }
E
emailweixu 已提交
510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
  ++trainPassContext_.passId;
}

void Trainer::trainOnePass() {
  startTrainPass();
  size_t batchSize = config_->getOptConfig().batch_size();
  while (true) {
    DataBatch dataBatch;

    int num = 0;
    {
      REGISTER_TIMER("getTrainBatch");
      num = dataProvider_->getNextBatch(batchSize, &dataBatch);
    }
    if (num == 0) break;
    CHECK_EQ(num, dataBatch.getSize());
    trainOneDataBatch(dataBatch);
  }

  finishTrainPass();
Z
zhangjinchao01 已提交
530 531 532 533 534 535 536 537 538
}

void Trainer::trainOnePassBatch(int passId) {
  this->stats_->reset();

  trainerInternal_.getParameterUpdater()->startPass();
  const std::vector<Argument> inArgs;
  {
    REGISTER_TIMER("onePass");
539 540
    trainerInternal_.getGradientMachine()->forwardBackward(
        inArgs, nullptr, PASS_TRAIN, nullptr);
Z
zhangjinchao01 已提交
541 542 543 544 545 546 547 548 549
  }

  real cost = .0;
  int64_t num = 0;
  trainerInternal_.getGradientMachine()->getStats(cost, num);
  *stats_ += {num, cost};

  trainerInternal_.getGradientMachine()->onPassEnd();

550
  bool accepted = trainerInternal_.getParameterUpdater()->finishPass(cost);
Z
zhangjinchao01 已提交
551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570

  globalStat.setThreadInfo(true);
  globalStat.printAllStatus();
  globalStat.reset();

  LOG(INFO) << " Pass=" << passId
            << " AcceptedPass=" << (accepted ? acceptedPassId_ : -1)
            << stats_->getStats(false /*withCurrentCost*/);

  if (accepted) {
    if (acceptedPassId_ % FLAGS_saving_period == 0 && FLAGS_trainer_id == 0) {
      paramUtil_->saveParameters(acceptedPassId_);
    }
    acceptedPassId_++;
    if (FLAGS_save_only_one && acceptedPassId_ >= FLAGS_saving_period) {
      paramUtil_->deleteParameters(acceptedPassId_ - FLAGS_saving_period);
    }
  }
}

571 572
real Trainer::calcGradient(const DataBatch& dataBatch,
                           const Vector& value,
Z
zhangjinchao01 已提交
573 574 575
                           Vector& gradient) {
  CHECK_EQ(value.getSize(), gradient.getSize());
  std::vector<ParameterPtr>& parameters =
576
      trainerInternal_.getGradientMachine()->getParameters();
Z
zhangjinchao01 已提交
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596

  clearGradient();

  size_t offset = 0;
  size_t valueSize = value.getSize();

  for (auto& para : parameters) {
    CHECK_LE(offset + para->getSize(), valueSize);
    VectorPtr val =
        Vector::create(para->getSize(), value.getMemoryHandle(), offset);
    para->getBuf(PARAMETER_VALUE)->copyFrom(*val);
    para->setValueUpdated();
    offset += para->getSize();
  }

  CHECK_EQ(offset, valueSize);

  std::vector<Argument> inArgs = dataBatch.getStreams();
  std::vector<Argument> outArgs;

597 598
  trainerInternal_.getGradientMachine()->forwardBackward(
      inArgs, &outArgs, PASS_TRAIN);
Z
zhangjinchao01 已提交
599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623
  real cost = Argument::sumCosts(outArgs);

  offset = 0;
  for (auto& para : parameters) {
    VectorPtr grad =
        Vector::create(para->getSize(), gradient.getMemoryHandle(), offset);
    if (para->getBuf(PARAMETER_GRADIENT)) {
      grad->copyFrom(*para->getBuf(PARAMETER_GRADIENT));
    }
    offset += para->getSize();
  }

  return cost;
}

void Trainer::clearGradient() {
  std::vector<ParameterPtr>& parameters =
      trainerInternal_.getGradientMachine()->getNonStaticParameters();
  for (auto& parameter : parameters) {
    parameter->clearGradient();
  }
}

int Trainer::getBatchSize() { return config_->getOptConfig().batch_size(); }

E
emailweixu 已提交
624
void Trainer::createTester() {
625 626
  tester_.reset(new paddle::Tester(config_,
                                   createTesterConfig(),
E
emailweixu 已提交
627 628 629 630 631
                                   trainerInternal_.getGradientMachine(),
                                   trainerInternal_.getParameterUpdater(),
                                   testDataProvider_));
}

632
void Trainer::test() { tester_->test(); }
Z
zhangjinchao01 已提交
633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659

std::unique_ptr<TesterConfig> Trainer::createTesterConfig() {
  TesterConfig* conf = new TesterConfig;
  conf->testPeriod = FLAGS_test_period;
  conf->testAllDataInOnePeriod = FLAGS_test_all_data_in_one_period;
  conf->prevBatchState = FLAGS_prev_batch_state;
  conf->logPeriod = FLAGS_log_period;
  conf->loadsaveParametersInPserver = FLAGS_loadsave_parameters_in_pserver;
  conf->featFile = FLAGS_feat_file;
  conf->predictOutputDir = FLAGS_predict_output_dir;
  conf->trainerId = FLAGS_trainer_id;
  conf->distributeTest = FLAGS_distribute_test;
  conf->config = FLAGS_config;
  conf->modelList = FLAGS_model_list;
  conf->testPass = FLAGS_test_pass;
  conf->numPasses = FLAGS_num_passes;
  conf->savingPeriod = FLAGS_saving_period;
  conf->testWait = FLAGS_test_wait;
  conf->initModelPath = FLAGS_init_model_path;
  conf->saveOnlyOne = FLAGS_save_only_one;
  conf->testing = testing_;
  conf->mode = mode_;
  conf->trainState = &trainState_;
  conf->testState = &testState_;
  return std::unique_ptr<TesterConfig>(conf);
}

660
ParameterUtil* Trainer::getParameterUtilPtr() { return paramUtil_.get(); }
Z
zhangjinchao01 已提交
661
}  // namespace paddle