dist_matmul.py 116.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License

15
import copy
C
caozhou 已提交
16

Z
zhaoyingli 已提交
17
from .common import infer_shape
18
from .common import DistributedOperatorImplContainer
19
from .common import DistributedOperatorImpl
20
from .common import register_distributed_operator_impl_container
21
from .common import register_distributed_operator_impl
22
from .common import gradient_synchronization
J
JZ-LIANG 已提交
23
from .common import set_comm_op_dist_attr_for_program, naive_copy_op_dist_attr_for_program, is_parameter_related
24 25 26 27 28 29
from ..utils import is_dim_shard
from ..utils import is_dim_replicate
from ..utils import is_valid_list_index
from ..utils import compute_compatible_dim_mapping
from ..utils import compute_compatible_dims_mapping
from ..utils import compute_compatible_and_update_dim_mapping
30
from ..utils import set_dist_op_desc_original_id
31
from ..dist_attribute import OperatorDistributedAttribute
32
from paddle.fluid import core, unique_name
J
Jiabin Yang 已提交
33
from paddle.fluid.framework import _non_static_mode
34 35
from paddle.fluid.framework import Program, Parameter, Variable, program_guard
from paddle.fluid.data_feeder import check_variable_and_dtype, check_dtype
36
from paddle.distributed.fleet.meta_optimizers.common import OpRole, OP_ROLE_KEY, OP_ROLE_VAR_KEY
37
from ..process_group import new_process_group
38
from ..utils import _get_comm_group, _get_corresponding_rank
39
from .dist_default import DistributedDefaultImpl0
C
caozhou 已提交
40 41 42 43
from ..cost import build_comp_desc_from_dist_op, build_comm_desc_from_dist_op, build_dp_costs
from ..cost import build_comm_costs_from_descs, build_comp_costs_from_descs
from ..cost import MatmulV2OpCost, MatmulOpCost, MulOpCost, IdentityOpCost, AllreduceSumOpCost
from ..cost import MatmulV2GradOpCost, MatmulGradOpCost, MulGradOpCost
44 45


46
def copy_op_with_new_input_output(ctx, block, src_op, **kwargs):
47
    dist_op_desc = block.append_op(type='nop').desc
48
    dist_op_desc.copy_from(src_op.desc)
49
    set_dist_op_desc_original_id(dist_op_desc, src_op.desc, ctx)
50 51 52 53 54 55 56 57 58 59
    for input_name in src_op.desc.input_names():
        assert input_name in kwargs
        dist_op_desc.set_input(input_name, kwargs[input_name])
    for output_name in src_op.desc.output_names():
        assert input_name in kwargs
        dist_op_desc.set_output(output_name, kwargs[output_name])

    return dist_op_desc


60
def _update_dims_mapping_for_matmul(dist_op):
61
    changed = False
62 63
    op_desc = dist_op.serial_op.desc
    op_dist_attr = dist_op.dist_attr
64 65 66
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
C
caozhou 已提交
67 68 69 70 71 72 73 74
    trans_x = None
    trans_y = None
    if op_desc.type() == "matmul_v2":
        trans_x = op_desc.attr('trans_x')
        trans_y = op_desc.attr('trans_y')
    elif op_desc.type() == "matmul":
        trans_x = op_desc.attr('transpose_X')
        trans_y = op_desc.attr('transpose_Y')
75 76 77 78 79 80 81 82 83
    x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
    y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
    out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
C
caozhou 已提交
84
        assert trans_x is False
85
        x_dims_mapping.insert(0, -1)
C
caozhou 已提交
86
        out_dims_mapping.insert(out_dims_mapping_len - 1, 0)
87
    if y_dims_mapping_len == 1:
C
caozhou 已提交
88
        assert trans_y is False
89
        y_dims_mapping.insert(1, -1)
C
caozhou 已提交
90
        out_dims_mapping.insert(out_dims_mapping_len, 0)
91

C
caozhou 已提交
92 93 94
    new_x_dims_mapping_len = len(x_dims_mapping)
    new_y_dims_mapping_len = len(y_dims_mapping)
    new_out_dims_mapping_len = len(out_dims_mapping)
95
    # Deal with dim > 2 and take care of broadcasting
C
caozhou 已提交
96
    if new_out_dims_mapping_len > 2:
97 98 99 100
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

C
caozhou 已提交
101
        for i in range(new_out_dims_mapping_len - new_x_dims_mapping_len):
102
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
C
caozhou 已提交
103
        for i in range(new_x_dims_mapping_len - 2):
104 105
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

C
caozhou 已提交
106
        for i in range(new_out_dims_mapping_len - new_y_dims_mapping_len):
107
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
C
caozhou 已提交
108
        for i in range(new_y_dims_mapping_len - 2):
109 110
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

C
caozhou 已提交
111
        for i in range(new_out_dims_mapping_len - 2):
112 113 114 115 116 117
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

        compatible_dims_mapping = compute_compatible_dims_mapping([
            broadcast_x_dims_mapping, broadcast_y_dims_mapping,
            broadcast_out_dims_mapping
        ])
118 119
        if compatible_dims_mapping is None:
            return False
120

C
caozhou 已提交
121 122
        for i in range(new_x_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - new_x_dims_mapping_len)
123 124 125 126
            if x_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                x_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

C
caozhou 已提交
127 128
        for i in range(new_y_dims_mapping_len - 2):
            new_idx = i + (out_dims_mapping_len - new_y_dims_mapping_len)
129 130 131 132
            if y_dims_mapping[i] != compatible_dims_mapping[new_idx]:
                y_dims_mapping[i] = compatible_dims_mapping[new_idx]
                changed = True

C
caozhou 已提交
133
        for i in range(new_out_dims_mapping_len - 2):
134 135 136 137
            if out_dims_mapping[i] != compatible_dims_mapping[i]:
                out_dims_mapping[i] = compatible_dims_mapping[i]
                changed = True

C
caozhou 已提交
138 139 140 141 142 143 144
    if trans_x:
        x_dims_mapping[-1], x_dims_mapping[-2] = x_dims_mapping[
            -2], x_dims_mapping[-1]
    if trans_y:
        y_dims_mapping[-1], y_dims_mapping[-2] = y_dims_mapping[
            -2], y_dims_mapping[-1]

145
    # The following which uses negative index can be work
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, y_dims_mapping], [-1, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [x_dims_mapping, out_dims_mapping], [-2, -2])
    if dim_changed:
        changed = True

    dim_changed = compute_compatible_and_update_dim_mapping(
        [y_dims_mapping, out_dims_mapping], [-1, -1])
    if dim_changed:
        changed = True

C
caozhou 已提交
162 163 164 165 166 167 168
    if trans_x:
        x_dims_mapping[-1], x_dims_mapping[-2] = x_dims_mapping[
            -2], x_dims_mapping[-1]
    if trans_y:
        y_dims_mapping[-1], y_dims_mapping[-2] = y_dims_mapping[
            -2], y_dims_mapping[-1]

169
    # Remove unnecessary dim mapping to make sure the length of dims_mapping is same as its tensor
170 171
    if x_dims_mapping_len == 1:
        x_dims_mapping.pop(0)
C
caozhou 已提交
172
        out_dims_mapping.pop(out_dims_mapping_len - 1)
173 174
    if y_dims_mapping_len == 1:
        y_dims_mapping.pop(1)
C
caozhou 已提交
175
        out_dims_mapping.pop(out_dims_mapping_len)
176 177 178 179 180 181 182 183

    assert len(x_dims_mapping) == x_dims_mapping_len
    assert len(y_dims_mapping) == y_dims_mapping_len
    assert len(out_dims_mapping) == out_dims_mapping_len

    return changed


184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
def _is_auto_compatible_for_matmul(dist_op):
    op_desc = dist_op.serial_op.desc
    op_dist_attr = dist_op.dist_attr
    x_name = op_desc.input('X')[0]
    y_name = op_desc.input('Y')[0]
    out_name = op_desc.output('Out')[0]
    # Deep copy these dims_mappings for keeping them unchanged.
    x_dims_mapping = copy.deepcopy(op_dist_attr.get_input_dims_mapping(x_name))
    y_dims_mapping = copy.deepcopy(op_dist_attr.get_input_dims_mapping(y_name))
    out_dims_mapping = copy.deepcopy(
        op_dist_attr.get_output_dims_mapping(out_name))
    x_dims_mapping_len = len(x_dims_mapping)
    y_dims_mapping_len = len(y_dims_mapping)
    out_dims_mapping_len = len(out_dims_mapping)

    # Add dim mapping to Make sure the length dims_mapping be at least 2
    if x_dims_mapping_len == 1:
        x_dims_mapping.insert(0, -1)
    if y_dims_mapping_len == 1:
        y_dims_mapping.insert(1, -1)

205 206 207
    # NOTE: Partition is not supported if matmul op has trans.
    if op_desc.type() == "matmul_v2":
        if op_desc.attr('trans_x') or op_desc.attr('trans_y'):
208 209
            if x_dims_mapping[-2:] != [-1, -1
                                       ] or y_dims_mapping[-2:] != [-1, -1]:
210 211 212
                return False
    elif op_desc.type() == "matmul":
        if op_desc.attr('transpose_X') or op_desc.attr('transpose_Y'):
213 214
            if x_dims_mapping[-2:] != [-1, -1
                                       ] or y_dims_mapping[-2:] != [-1, -1]:
215 216
                return False

217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    # Deal with dim > 2 and take care of broadcasting
    if out_dims_mapping_len > 2:
        broadcast_x_dims_mapping = []
        broadcast_y_dims_mapping = []
        broadcast_out_dims_mapping = []

        for i in range(out_dims_mapping_len - x_dims_mapping_len):
            broadcast_x_dims_mapping.append(out_dims_mapping[i])
        for i in range(x_dims_mapping_len - 2):
            broadcast_x_dims_mapping.append(x_dims_mapping[i])

        for i in range(out_dims_mapping_len - y_dims_mapping_len):
            broadcast_y_dims_mapping.append(out_dims_mapping[i])
        for i in range(y_dims_mapping_len - 2):
            broadcast_y_dims_mapping.append(y_dims_mapping[i])

        for i in range(out_dims_mapping_len - 2):
            broadcast_out_dims_mapping.append(out_dims_mapping[i])

236 237
        is_same = ((broadcast_x_dims_mapping == broadcast_y_dims_mapping)
                   and (broadcast_x_dims_mapping == broadcast_out_dims_mapping))
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
        if not is_same:
            return False

    # The following which uses negative index can be work
    # when len(out_dims_mapping) > 2 and len(out_dims_mapping) <=2
    is_same = (x_dims_mapping[-1] == y_dims_mapping[-2])
    if not is_same:
        return False

    is_same = (x_dims_mapping[-2] == out_dims_mapping[-2])
    if not is_same:
        return False

    is_same = (y_dims_mapping[-1] == out_dims_mapping[-1])
    if not is_same:
        return False

    return True


258 259 260 261
def _right_operand_parameter_matmul_backward(ctx, *args, **kwargs):

    # by now the backward function only insert the gradient allreduce for dist op itself

262
    dist_op_context = ctx.dist_op_context
263 264 265
    main_block = dist_op_context.work_block
    backward_op = dist_op_context.cur_src_op
    rank_id = dist_op_context.rank_id
266
    dist_attr = ctx.get_op_dist_attr_for_program(backward_op)
267 268 269 270
    assert dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
        str(backward_op))

    # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
271 272
    if rank_id not in dist_attr.process_mesh.processes:
        rank_id = _get_corresponding_rank(ctx, dist_attr.process_mesh, rank_id)
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296

    assert 'Y' in kwargs, "input [{}] is not given".format('Y')
    assert 'X' in kwargs, "input [{}] is not given".format('X')
    assert 'Out@GRAD' in kwargs, "input [{}] is not given".format('Out@GRAD')
    assert 'Y@GRAD' in kwargs, "output [{}] is not given".format('Y@GRAD')
    assert 'X@GRAD' in kwargs, "output [{}] is not given".format('X@GRAD')
    assert len(
        kwargs['Y']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Y'])
    assert len(
        kwargs['X']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['X'])
    assert len(
        kwargs['Out@GRAD']
    ) == 1, "row_parallel_embedding input Ids take 1 variable but got {}".format(
        kwargs['Out'])
    assert len(
        kwargs['Y@GRAD']
    ) == 1, "row_parallel_embedding output Ids take 1 variable but got {}".format(
        kwargs['Y@GRAD'])

    X_var = main_block.var(kwargs['X'][0])
297
    Y_var = main_block._var_recursive(kwargs['Y'][0])
298 299 300
    Out_grad = main_block.var(kwargs['Out@GRAD'][0])
    Y_grad = main_block.var(kwargs['Y@GRAD'][0])

J
JZ-LIANG 已提交
301 302 303
    assert not is_parameter_related(
        X_var.name, main_block
    ), "left operand(X) [{}] of dist matmul should not be parameter".format(
304 305
        X_var.name)

306 307 308
    Y_var_dim_mapping = dist_attr.get_input_dims_mapping(Y_var.name)
    process_mesh_shape = dist_attr.process_mesh.topology
    process_mesh_group = dist_attr.process_mesh.processes
309 310 311 312
    # assert len(
    #     Y_var_dim_mapping
    # ) == 2, "dist matmual only support Y operand with 2 dims now but Y({})'s dim is [{}]".format(
    #     Y_var.name, Y_var_dim_mapping)
313 314 315 316 317 318
    Y_var_partitioned = False
    for dim in Y_var_dim_mapping:
        if dim >= 0 and process_mesh_shape[dim] > 0:
            Y_var_partitioned = True
            break

J
JZ-LIANG 已提交
319
    if is_parameter_related(Y_var.name, main_block) and Y_var_partitioned:
320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345

        if Y_var_dim_mapping[0] >= 0:
            # row parallel: c_identity + matmul
            assert Y_var_dim_mapping[1] < 0
            parallel_axis = Y_var_dim_mapping[0]

            check_variable_and_dtype(
                Out_grad, 'tensor',
                ['float16', 'float32', 'float64', 'int32', 'int64'],
                '_c_identity')

            intermediate_var_0 = main_block.create_var(
                name=unique_name.generate_with_ignorable_key(".".join(
                    ["c_identity", 'tmp'])) + "@GRAD",
                dtype=Out_grad.dtype,
                shape=Out_grad.shape,
                type=core.VarDesc.VarType.LOD_TENSOR,
                persistable=False,
                stop_gradient=Out_grad.stop_gradient)

            # copy X_var's dist_attr to intermediate_var_0's dist_attr
            out_grad_dist_attr = dist_attr.get_input_dist_attr(Out_grad.name)
            assert out_grad_dist_attr is not None
            ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                                 out_grad_dist_attr)

346 347 348
            group_ranks = _get_comm_group(process_mesh_group,
                                          process_mesh_shape, parallel_axis,
                                          rank_id)
349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
            group = new_process_group(group_ranks)
            c_identity_op = main_block.append_op(
                type='c_identity',
                inputs={'X': [Out_grad]},
                outputs={'Out': intermediate_var_0},
                attrs={
                    'ring_id': group.id,
                    'use_calc_stream': True,
                    'use_model_parallel': True,
                    OP_ROLE_KEY: OpRole.Backward,
                })
            check_variable_and_dtype(intermediate_var_0, 'x',
                                     ['float16', 'float32', 'float64'],
                                     'linear')
            check_dtype(intermediate_var_0.dtype, 'dtype',
                        ['float16', 'float32', 'float64'], 'linear')
365 366 367
            set_comm_op_dist_attr_for_program(c_identity_op,
                                              dist_attr.process_mesh,
                                              out_grad_dist_attr, ctx)
368 369 370 371

            new_kwargs = copy.deepcopy(kwargs)
            new_kwargs['Out@GRAD'] = [intermediate_var_0.name]
            matmul_op_desc = copy_op_with_new_input_output(
372
                ctx, main_block, backward_op, **new_kwargs)
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399
        else:
            # col parallel: matmul + allreduce
            assert Y_var_dim_mapping[0] < 0
            parallel_axis = Y_var_dim_mapping[1]
            new_kwargs = copy.deepcopy(kwargs)

            # NOTE (JZ-LIANG) should allow left operand be empty for matmul grad
            has_x_grad = len(kwargs['X@GRAD']) > 0
            if has_x_grad:
                assert len(kwargs['X@GRAD']) == 1
                X_grad = main_block.var(kwargs['X@GRAD'][0])
                intermediate_var_0 = main_block.create_var(
                    name=unique_name.generate_with_ignorable_key(".".join(
                        ["c_identity", 'tmp'])) + "@GRAD",
                    dtype=X_grad.dtype,
                    shape=X_grad.shape,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=X_grad.stop_gradient)

                X_grad_dist_attr = dist_attr.get_output_dist_attr(X_grad.name)
                assert X_grad_dist_attr is not None
                ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                                     X_grad_dist_attr)
                new_kwargs['X@GRAD'] = [intermediate_var_0.name]

            matmul_op_desc = copy_op_with_new_input_output(
400
                ctx, main_block, backward_op, **new_kwargs)
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422

            # NOTE (JZ-LIANG) trick to skip one allreduce if left operand has not grad
            if has_x_grad:
                group_ranks = _get_comm_group(process_mesh_group,
                                              process_mesh_shape, parallel_axis,
                                              rank_id)
                group = new_process_group(group_ranks)
                c_allreduce_sum_op = main_block.append_op(
                    type='c_allreduce_sum',
                    inputs={'X': [intermediate_var_0.name]},
                    outputs={'Out': kwargs['X@GRAD']},
                    attrs={
                        'ring_id': group.id,
                        'use_calc_stream': True,
                        'use_model_parallel': True,
                        OP_ROLE_KEY: OpRole.Backward
                    })
                set_comm_op_dist_attr_for_program(c_allreduce_sum_op,
                                                  dist_attr.process_mesh,
                                                  X_grad_dist_attr, ctx)
    else:
        # replicate
423 424
        matmul_op_desc = copy_op_with_new_input_output(ctx, main_block,
                                                       backward_op, **kwargs)
425

426 427 428 429 430 431 432 433 434
    # data parallel gradient synchronization
    act_grad_names = [X_var.name]

    out_grad_names = []
    if is_parameter_related(Y_var.name, main_block):
        out_grad_names = [kwargs['Y@GRAD'][0]]

    gradient_synchronization(ctx, backward_op, act_grad_names, out_grad_names,
                             rank_id)
435 436


437
def _init_param_sync(Weight_var, dist_op_context, startup_block, ctx, rank_id):
438

439 440
    if Weight_var.name in dist_op_context.already_init_sync_vars:
        return
441
    assert startup_block.has_var(Weight_var.name)
442
    dist_op_context.already_init_sync_vars.add(Weight_var.name)
443
    param = startup_block.var(Weight_var.name)
444 445 446
    param_dist_attr = ctx.get_tensor_dist_attr_for_program(param)
    process_mesh = param_dist_attr.process_mesh
    dim_mapping = param_dist_attr.dims_mapping
447 448 449 450 451

    for axis, size in enumerate(process_mesh.topology):
        if size <= 1 or axis in dim_mapping:
            pass
        else:
452
            group_ranks = _get_comm_group(process_mesh.processes,
453 454 455
                                          process_mesh.topology, axis, rank_id)
            sync_group = new_process_group(group_ranks)

456 457 458 459 460 461 462 463 464
            startup_block.append_op(type='c_broadcast',
                                    inputs={'X': param},
                                    outputs={'Out': param},
                                    attrs={
                                        'ring_id': sync_group.id,
                                        'root': 0,
                                        'use_calc_stream': True,
                                        OP_ROLE_KEY: OpRole.Forward
                                    })
465 466


467
class DistributedMatmul(DistributedOperatorImplContainer):
468

469 470
    def __init__(self, op_type):
        super(DistributedMatmul, self).__init__(op_type)
471 472


473
register_distributed_operator_impl_container(DistributedMatmul("matmul"))
474 475 476 477


# ColumnParallel
class DistributedMatmulImpl0(DistributedOperatorImpl):
478

479
    def __init__(self, name):
480
        super(DistributedMatmulImpl0, self).__init__(name)
481
        self._forward_implemented = True
482
        self._backward_implemented = True
483

C
caozhou 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        # col parallel: matmul + allreduce
        assert Y_var_dim_mapping[0] < 0
        parallel_axis = Y_var_dim_mapping[1]

        has_x_grad = len(backward_op.output("X@GRAD")) > 0
        if has_x_grad:
            assert len(backward_op.output("X@GRAD")) == 1

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # calc comm op cost
        if has_x_grad:
            attrs = {"use_calc_stream": True, "use_model_parallel": True}
            var_names = backward_op.output("X@GRAD")
            c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
                "c_allreduce_sum",
                dist_op,
                ctx,
                var_names,
                attrs=attrs,
                parallel_axis=parallel_axis)
            comm_op_cost_list = build_comm_costs_from_descs(
                AllreduceSumOpCost, ctx, processes,
                c_allreduce_sum_desc_mapping, cluster)
            res.append(comm_op_cost_list)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars
        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-1]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        var_names = serial_op.input("X")
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res_cost = [comm_op_cost_list, cost_mapping]

        return res_cost

580 581 582
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
583 584 585 586 587 588
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
589 590
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(
                y_dims_mapping[-1]):
591 592 593 594 595 596
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

597 598 599
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
600 601 602 603 604 605 606 607 608
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

609
    def is_auto_compatible(self, dist_op):
610 611
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
612
            return False
613
        if not _is_auto_compatible_for_matmul(dist_op):
614 615 616
            return False
        return True

617
    def update_dims_mapping(self, dist_op):
618
        changed = False
619
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
620 621 622 623
        if dim_changed:
            changed = True
        return changed

624 625 626 627 628 629
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

630
        dist_op_context = ctx.dist_op_context
631 632 633 634
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
635
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
636 637 638 639
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
640 641
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
642 643
                                              rank_id)

644
        # check validation of inputs / outputs
645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
665
            Weight_var.name)[-1]
666 667
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
668 669
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
670 671 672 673 674 675

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

691 692 693 694 695 696 697 698
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
699 700 701
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
702 703 704 705 706 707 708 709 710 711 712 713 714

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')

        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
715
                OP_ROLE_KEY: src_op.attr('op_role')
716
            })
Z
zhaoyingli 已提交
717 718
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
719 720 721 722 723 724 725 726 727

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
728
            OP_ROLE_KEY: src_op('op_role')
729 730
        }
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
731 732 733 734
        matmul_op = main_block.append_op(type='matmul',
                                         inputs=inputs,
                                         outputs={'Out': Out_var},
                                         attrs=attrs)
Z
zhaoyingli 已提交
735 736 737 738 739 740 741
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
742
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
761
        matmul_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        for input_varname in matmul_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        input_dist_attr)
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
                matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                        tensor_dist_attr)
        # output
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        # set op dist attr
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)
787 788

        # init param sync
789
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
790
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
791 792 793 794 795
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
796

797 798 799

# RowParallel
class DistributedMatmulImpl1(DistributedOperatorImpl):
800

801
    def __init__(self, name):
802
        super(DistributedMatmulImpl1, self).__init__(name)
803
        self._forward_implemented = True
804
        self._backward_implemented = True
805

C
caozhou 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        assert Y_var_dim_mapping[1] < 0
        parallel_axis = Y_var_dim_mapping[0]

        # calc comm op cost
        var_names = [backward_op.input("Out@GRAD")[0]]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res.append(comm_op_cost_list)

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        cost_mapping = build_comp_costs_from_descs(MatmulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars

        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-2]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}

        var_names = serial_op.output("Out")
        c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
            "c_allreduce_sum",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        comm_op_cost_list = build_comm_costs_from_descs(
            AllreduceSumOpCost, ctx, processes, c_allreduce_sum_desc_mapping,
            cluster)

        res_cost = [cost_mapping, comm_op_cost_list]

        return res_cost

899 900 901
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
902 903 904 905 906 907
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
908 909
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(
                y_dims_mapping[-1]):
910 911 912 913 914 915 916
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

917 918 919
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
920 921 922 923 924 925 926 927 928 929
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

930
    def is_auto_compatible(self, dist_op):
931 932
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
933
            return False
934

935
        if not _is_auto_compatible_for_matmul(dist_op):
936 937 938 939
            return False

        return True

940
    def update_dims_mapping(self, dist_op):
941
        changed = False
942
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
943 944 945 946
        if dim_changed:
            changed = True
        return changed

947 948 949 950 951 952
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

953
        dist_op_context = ctx.dist_op_context
954 955 956 957
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
958
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
959 960 961 962
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
963 964
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
965 966
                                              rank_id)

967
        # check validation of inputs / outputs
968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block.var(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
988
            Weight_var.name)[-2]
989 990
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
991 992
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        attrs = {
            'transpose_X': False,
            'transpose_Y': False,
            'alpha': 1,
1007
            OP_ROLE_KEY: src_op.attr('op_role')
1008 1009
        }
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

1019
        intermediate_var_0 = main_block.create_var(
1020 1021
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_allreduce_sum", 'tmp'])),
1022 1023 1024 1025 1026 1027 1028
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
1029 1030 1031
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
1032

1033 1034 1035 1036
        matmul_op = main_block.append_op(type='matmul',
                                         inputs=inputs,
                                         outputs={'Out': intermediate_var_0},
                                         attrs=attrs)
Z
zhaoyingli 已提交
1037 1038
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
1039 1040 1041 1042 1043 1044 1045 1046

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
1047 1048
                'use_model_parallel': True,
                OP_ROLE_KEY: src_op.attr('op_role')
1049
            })
Z
zhaoyingli 已提交
1050 1051 1052 1053 1054 1055 1056
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmul
        matmul_op_dist_attr = OperatorDistributedAttribute()
        matmul_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1057
        matmul_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075
        matmul_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmul_op_dist_attr.set_input_dist_attr(input_varname,
                                                    input_dist_attr)
        output_varname = matmul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmul_op_dist_attr.set_output_dist_attr(output_varname,
                                                 output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_op, matmul_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1076
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
1092 1093

        # init param sync
1094
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
1095
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1096 1097 1098 1099 1100
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1101

1102

1103
# ReplicateParallel
1104
class DistributedMatmulImpl2(DistributedOperatorImpl):
1105

1106
    def __init__(self, name):
1107
        super(DistributedMatmulImpl2, self).__init__(name)
1108

C
caozhou 已提交
1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)

        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        res_cost = [cost_mapping]
        return res_cost

1162 1163 1164
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1165 1166 1167 1168 1169 1170 1171
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
1172 1173
        if is_valid_list_index(x_dims_mapping, -2) and is_dim_shard(
                x_dims_mapping[-2]):
1174 1175 1176 1177
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
1178 1179
        if is_valid_list_index(y_dims_mapping, -2) and is_dim_shard(
                y_dims_mapping[-2]):
1180 1181 1182 1183
            return False

        return True

1184 1185 1186
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1187 1188 1189 1190 1191
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
1192 1193
        if is_valid_list_index(out_dims_mapping, -2) and is_dim_shard(
                out_dims_mapping[-2]):
1194 1195 1196 1197
            return False

        return True

1198
    def is_auto_compatible(self, dist_op):
1199 1200
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1201 1202
            return False

1203
        if not _is_auto_compatible_for_matmul(dist_op):
1204 1205 1206 1207
            return False

        return True

1208
    def update_dims_mapping(self, dist_op):
1209
        changed = False
1210
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1211 1212 1213 1214
        if dim_changed:
            changed = True
        return changed

1215 1216 1217 1218
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

1219 1220 1221 1222
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

1223 1224 1225 1226 1227 1228 1229 1230 1231

register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl0("column_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl1("row_parallel"))
register_distributed_operator_impl("matmul",
                                   DistributedMatmulImpl2("replicate_parallel"))


1232
class DistributedMatmulV2(DistributedOperatorImplContainer):
1233

1234 1235
    def __init__(self, op_type):
        super(DistributedMatmulV2, self).__init__(op_type)
1236 1237


1238
register_distributed_operator_impl_container(DistributedMatmulV2("matmul_v2"))
1239 1240


1241 1242
# ColumnParallel
class DistributedMatmulV2Impl0(DistributedOperatorImpl):
1243

1244
    def __init__(self, name):
1245
        super(DistributedMatmulV2Impl0, self).__init__(name)
1246
        self._forward_implemented = True
1247
        self._backward_implemented = True
1248

1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        # col parallel: matmul + allreduce
        assert Y_var_dim_mapping[0] < 0
        parallel_axis = Y_var_dim_mapping[1]

        has_x_grad = len(backward_op.output("X@GRAD")) > 0
        if has_x_grad:
            assert len(backward_op.output("X@GRAD")) == 1

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)

        cost_mapping = build_comp_costs_from_descs(MatmulV2GradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # calc comm op cost
        if has_x_grad:
            attrs = {"use_calc_stream": True, "use_model_parallel": True}
            var_names = backward_op.output("X@GRAD")
            c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
                "c_allreduce_sum",
                dist_op,
                ctx,
                var_names,
                attrs=attrs,
                parallel_axis=parallel_axis)
            comm_op_cost_list = build_comm_costs_from_descs(
                AllreduceSumOpCost, ctx, processes,
                c_allreduce_sum_desc_mapping, cluster)
            res.append(comm_op_cost_list)

        # need gradient allreduce
        process_mesh = dist_attr.process_mesh
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        # TODO: trans shape if trans_x or trans_y is True
        comp_desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                         dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        comp_cost_mapping = build_comp_costs_from_descs(MatmulV2OpCost, ctx,
                                                        processes,
                                                        comp_desc_mapping,
                                                        cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars

        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-1]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}

        var_names = serial_op.input("X")
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)
        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)

        res_cost = [comm_op_cost_list, comp_cost_mapping]
        return res_cost

1351 1352 1353
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1354 1355 1356 1357 1358 1359
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
1360 1361
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(
                y_dims_mapping[-1]):
1362 1363 1364 1365 1366 1367
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1368 1369 1370
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1371 1372 1373 1374 1375 1376 1377 1378 1379
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1380
    def is_auto_compatible(self, dist_op):
1381 1382
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1383 1384
            return False

1385
        if not _is_auto_compatible_for_matmul(dist_op):
1386 1387 1388 1389
            return False

        return True

1390
    def update_dims_mapping(self, dist_op):
1391
        changed = False
1392
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1393 1394 1395 1396
        if dim_changed:
            changed = True
        return changed

1397 1398 1399 1400 1401 1402
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1403
        dist_op_context = ctx.dist_op_context
1404 1405 1406 1407
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
1408
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1409 1410 1411 1412
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1413 1414
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1415 1416
                                              rank_id)

1417
        # check validation of inputs / outputs
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
1433
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
1434 1435 1436 1437
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
1438
            Weight_var.name)[-1]
1439 1440
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
1441 1442
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1443 1444 1445 1446 1447 1448

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

Z
zhaoyingli 已提交
1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463
        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

1464 1465 1466 1467 1468 1469 1470 1471
        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
Z
zhaoyingli 已提交
1472 1473 1474
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)
1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')
        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
1487
                OP_ROLE_KEY: src_op.attr('op_role'),
1488
            })
Z
zhaoyingli 已提交
1489 1490
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)
1491 1492 1493 1494 1495

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
1496 1497 1498 1499 1500
        attrs = {
            'trans_x': False,
            'trans_y': False,
            OP_ROLE_KEY: src_op.attr('op_role')
        }
1501
        inputs = {'X': [intermediate_var_0], 'Y': [Weight_var]}
1502 1503 1504 1505
        matmul_v2_op = main_block.append_op(type='matmul_v2',
                                            inputs=inputs,
                                            outputs={'Out': Out_var},
                                            attrs=attrs)
Z
zhaoyingli 已提交
1506 1507 1508 1509 1510 1511 1512
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1513
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1531
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1532 1533 1534 1535 1536 1537 1538
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
1539 1540
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, input_dist_attr)
Z
zhaoyingli 已提交
1541 1542 1543 1544
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
1545 1546
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, tensor_dist_attr)
Z
zhaoyingli 已提交
1547 1548 1549 1550 1551 1552 1553
        for output_varname in matmul_v2_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                       output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)
1554 1555

        # init param sync
1556
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
1557
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1558 1559 1560 1561 1562
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1563 1564 1565 1566


# RowParallel
class DistributedMatmulV2Impl1(DistributedOperatorImpl):
1567

1568
    def __init__(self, name):
1569
        super(DistributedMatmulV2Impl1, self).__init__(name)
1570
        self._forward_implemented = True
1571
        self._backward_implemented = True
1572

1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        assert Y_var_dim_mapping[1] < 0
        parallel_axis = Y_var_dim_mapping[0]

        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        # calc comm op cost
        var_names = [backward_op.input("Out@GRAD")[0]]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)
        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res.append(comm_op_cost_list)

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        cost_mapping = build_comp_costs_from_descs(MatmulV2GradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        process_mesh = dist_attr.process_mesh
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulV2OpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars

        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-2]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}

        var_names = serial_op.output("Out")
        c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
            "c_allreduce_sum",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        comm_op_cost_list = build_comm_costs_from_descs(
            AllreduceSumOpCost, ctx, processes, c_allreduce_sum_desc_mapping,
            cluster)
        res_cost = [cost_mapping, comm_op_cost_list]

        return res_cost

1667 1668 1669
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1670 1671 1672 1673 1674 1675
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
1676 1677
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(
                y_dims_mapping[-1]):
1678 1679 1680 1681 1682 1683 1684
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1685 1686 1687
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1688 1689 1690 1691 1692 1693 1694 1695 1696 1697
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

1698
    def is_auto_compatible(self, dist_op):
1699 1700
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1701 1702
            return False

1703
        if not _is_auto_compatible_for_matmul(dist_op):
1704 1705 1706 1707
            return False

        return True

1708
    def update_dims_mapping(self, dist_op):
1709
        changed = False
1710
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1711 1712 1713 1714
        if dim_changed:
            changed = True
        return changed

1715 1716 1717 1718 1719 1720
    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

1721
        dist_op_context = ctx.dist_op_context
1722 1723 1724 1725
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
1726
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
1727 1728 1729 1730
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
1731 1732
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
1733 1734
                                              rank_id)

1735
        # check validation of inputs / outputs
1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
1751
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
1752 1753 1754 1755
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
1756
            Weight_var.name)[-2]
1757 1758
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
1759 1760
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes
1761 1762 1763 1764 1765 1766 1767 1768 1769 1770

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
1771 1772 1773 1774 1775
        attrs = {
            'trans_x': False,
            'trans_y': False,
            OP_ROLE_KEY: src_op.attr('op_role')
        }
1776
        inputs = {'X': X_var, 'Y': Weight_var}
Z
zhaoyingli 已提交
1777 1778 1779 1780 1781 1782 1783 1784 1785

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

1786
        intermediate_var_0 = main_block.create_var(
1787 1788
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_allreduce_sum", 'tmp'])),
1789 1790 1791 1792 1793 1794 1795
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
Z
zhaoyingli 已提交
1796 1797 1798
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)
1799

1800 1801 1802 1803
        matmul_v2_op = main_block.append_op(type='matmul_v2',
                                            inputs=inputs,
                                            outputs={'Out': intermediate_var_0},
                                            attrs=attrs)
Z
zhaoyingli 已提交
1804 1805
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)
1806 1807 1808 1809 1810 1811 1812 1813

        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
1814 1815
                'use_model_parallel': True,
                OP_ROLE_KEY: src_op.attr('op_role')
1816
            })
Z
zhaoyingli 已提交
1817 1818 1819 1820 1821 1822 1823
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1824
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in matmul_v2_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                      input_dist_attr)
        output_varname = matmul_v2_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                   output_dist_attr)
        ctx.set_op_dist_attr_for_program(matmul_v2_op, matmulv2_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
1843
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
Z
zhaoyingli 已提交
1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)
1859 1860

        # init param sync
1861
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
1862
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
1863 1864 1865 1866 1867
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)
1868 1869


1870
# ReplicateParallel
1871
class DistributedMatmulV2Impl2(DistributedOperatorImpl):
1872

1873
    def __init__(self, name):
1874
        super(DistributedMatmulV2Impl2, self).__init__(name)
1875

1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        process_mesh = dist_attr.process_mesh

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulV2GradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)

        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MatmulV2OpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)

        res_cost = [cost_mapping]

        return res_cost

1931 1932 1933
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1934 1935 1936 1937 1938 1939 1940
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
1941 1942
        if is_valid_list_index(x_dims_mapping, -2) and is_dim_shard(
                x_dims_mapping[-2]):
1943 1944 1945 1946
            return False

        if is_dim_shard(y_dims_mapping[-1]):
            return False
1947 1948
        if is_valid_list_index(y_dims_mapping, -2) and is_dim_shard(
                y_dims_mapping[-2]):
1949 1950 1951
            return False
        return True

1952 1953 1954 1955 1956
    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
1957 1958 1959 1960 1961
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
1962 1963
        if is_valid_list_index(out_dims_mapping, -2) and is_dim_shard(
                out_dims_mapping[-2]):
1964 1965 1966 1967
            return False

        return True

1968
    def is_auto_compatible(self, dist_op):
1969 1970
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
1971 1972
            return False

1973
        if not _is_auto_compatible_for_matmul(dist_op):
1974 1975 1976 1977
            return False

        return True

1978
    def update_dims_mapping(self, dist_op):
1979
        changed = False
1980
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
1981 1982 1983 1984
        if dim_changed:
            changed = True
        return changed

1985 1986 1987 1988
    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

1989 1990 1991 1992
    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)

1993

1994 1995 1996 1997
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl0("column_parallel"))
register_distributed_operator_impl("matmul_v2",
                                   DistributedMatmulV2Impl1("row_parallel"))
1998
register_distributed_operator_impl(
1999
    "matmul_v2", DistributedMatmulV2Impl2("replicate_parallel"))
2000 2001 2002


class DistributedMul(DistributedOperatorImplContainer):
2003

2004 2005 2006 2007 2008 2009 2010 2011 2012
    def __init__(self, op_type):
        super(DistributedMul, self).__init__(op_type)


register_distributed_operator_impl_container(DistributedMul("mul"))


# ColumnParallel
class DistributedMulImpl0(DistributedOperatorImpl):
2013

2014 2015 2016 2017 2018
    def __init__(self, name):
        super(DistributedMulImpl0, self).__init__(name)
        self._forward_implemented = True
        self._backward_implemented = True

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        # col parallel: matmul + allreduce
        assert Y_var_dim_mapping[0] < 0
        parallel_axis = Y_var_dim_mapping[1]

        has_x_grad = len(backward_op.output("X@GRAD")) > 0
        if has_x_grad:
            assert len(backward_op.output("X@GRAD")) == 1

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # calc comm op cost
        if has_x_grad:
            attrs = {"use_calc_stream": True, "use_model_parallel": True}
            var_names = backward_op.output("X@GRAD")
            c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
                "c_allreduce_sum",
                dist_op,
                ctx,
                var_names,
                attrs=attrs,
                parallel_axis=parallel_axis)
            comm_op_cost_list = build_comm_costs_from_descs(
                AllreduceSumOpCost, ctx, processes,
                c_allreduce_sum_desc_mapping, cluster)
            res.append(comm_op_cost_list)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars
        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-1]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        var_names = serial_op.input("X")
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res_cost = [comm_op_cost_list, cost_mapping]

        return res_cost

2115 2116 2117 2118 2119 2120 2121 2122 2123
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_shard(x_dims_mapping[-1]):
            return False
2124 2125
        if is_dim_shard(y_dims_mapping[-2]) or is_dim_replicate(
                y_dims_mapping[-1]):
2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
            return False
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_replicate(out_dims_mapping[-1]):
            return False
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        if not _is_auto_compatible_for_matmul(dist_op):
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
        if dim_changed:
            changed = True
        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
                                              rank_id)

        # check validation of inputs / outputs
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_col_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[-1]
        assert matmul_col_dim_mapping >= 0, "col_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_col_dim_mapping)
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes

        parallel_axis = matmul_col_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        # infer new var shape with op dist attr
        x_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(X_var)
        assert x_tensor_dist_attr is not None
        identity_var_dist_attr = op_dist_attr.get_input_dist_attr(X_var.name)
        assert identity_var_dist_attr is not None
        ref_shape_x = infer_shape(main_block, X_var, x_tensor_dist_attr,
                                  identity_var_dist_attr)
        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape_out = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                    out_var_dist_attr)

        intermediate_var_0 = main_block.create_var(
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_identity", 'tmp'])),
            dtype=X_var.dtype,
            shape=X_var.shape,
            type=core.VarDesc.VarType.LOD_TENSOR,
            persistable=False,
            stop_gradient=X_var.stop_gradient)
        # set intermediate_var_0's dist_attr with X_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             identity_var_dist_attr)

        check_variable_and_dtype(
            X_var, 'tensor',
            ['float16', 'float32', 'float64', 'int32', 'int64'], '_c_identity')
        c_identity_op = main_block.append_op(
            type='c_identity',
            inputs={'X': [X_var]},
            outputs={'Out': intermediate_var_0},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
                'use_model_parallel': True,
2251
                OP_ROLE_KEY: src_op.attr('op_role')
2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262
            })
        if intermediate_var_0.shape != ref_shape_x:
            intermediate_var_0.desc.set_shape(ref_shape_x)

        check_variable_and_dtype(intermediate_var_0, 'x',
                                 ['float16', 'float32', 'float64'], 'linear')
        check_dtype(intermediate_var_0.dtype, 'dtype',
                    ['float16', 'float32', 'float64'], 'linear')
        # attrs = {'trans_x': False, 'trans_y': False}
        attrs = {
            "x_num_col_dims": src_op.desc.attr("x_num_col_dims"),
2263 2264
            "y_num_col_dims": src_op.desc.attr("y_num_col_dims"),
            OP_ROLE_KEY: src_op.attr('op_role')
2265
        }
2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283
        inputs = {'X': intermediate_var_0, 'Y': Weight_var}

        inputs_ref_shape = {}
        inputs_original_shape = {}
        for var_name in inputs:
            if var_name == "X":
                var = X_var
            else:
                var = inputs[var_name]
            inputs_original_shape[var_name] = var.shape
            input_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(var)
            input_var_dist_attr = op_dist_attr.get_input_dist_attr(var.name)
            input_ref_shape = infer_shape(main_block, var,
                                          input_tensor_dist_attr,
                                          input_var_dist_attr)
            inputs_ref_shape[var_name] = input_ref_shape
            var.desc.set_shape(input_ref_shape)

2284 2285 2286 2287
        mul_op = main_block.append_op(type='mul',
                                      inputs=inputs,
                                      outputs={'Out': Out_var},
                                      attrs=attrs)
2288 2289 2290
        if Out_var.shape != ref_shape_out:
            Out_var.desc.set_shape(ref_shape_out)

2291 2292 2293 2294 2295
        for var_name in inputs:
            var = inputs[var_name]
            original_shape = inputs_original_shape[var_name]
            var.desc.set_shape(original_shape)

2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325
        # set dist op's dist_attr with serial op's dist_attr
        # c_identity
        identity_op_dist_attr = OperatorDistributedAttribute()
        identity_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        identity_op_dist_attr.impl_type = op_dist_attr.impl_type
        identity_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        # input
        input_varname = c_identity_op.desc.input_arg_names()[0]
        input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
        assert input_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        identity_op_dist_attr.set_input_dist_attr(input_varname,
                                                  input_dist_attr)
        # output
        output_varname = c_identity_op.desc.output_arg_names()[0]
        identity_op_dist_attr.set_output_dist_attr(output_varname,
                                                   input_dist_attr)
        ctx.set_op_dist_attr_for_program(c_identity_op, identity_op_dist_attr)

        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in mul_op.desc.input_arg_names():
            if input_varname in src_op.desc.input_arg_names():
                input_dist_attr = op_dist_attr.get_input_dist_attr(
                    input_varname)
                assert input_dist_attr is not None, "dist_attr is {}".format(
                    op_dist_attr)
2326 2327
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, input_dist_attr)
2328 2329 2330 2331
            else:
                input_var = main_block.var(input_varname)
                tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(
                    input_var)
2332 2333
                matmulv2_op_dist_attr.set_input_dist_attr(
                    input_varname, tensor_dist_attr)
2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
        for output_varname in mul_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                       output_dist_attr)
        ctx.set_op_dist_attr_for_program(mul_op, matmulv2_op_dist_attr)

        # init param sync
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)


# RowParallel
class DistributedMulImpl1(DistributedOperatorImpl):
2354

2355 2356 2357 2358 2359
    def __init__(self, name):
        super(DistributedMulImpl1, self).__init__(name)
        self._forward_implemented = True
        self._backward_implemented = True

2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        # by now the backward function only insert the gradient allreduce for dist op itself
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        process_mesh = dist_attr.process_mesh
        main_block = backward_op.block
        vars = main_block.vars
        Y_var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("Y")[0])
        assert Y_var_dim_mapping[1] < 0
        parallel_axis = Y_var_dim_mapping[0]

        # calc comm op cost
        var_names = [backward_op.input("Out@GRAD")[0]]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}
        c_identity_desc_mapping = build_comm_desc_from_dist_op(
            "c_identity",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)
        processes = process_mesh.processes
        comm_op_cost_list = build_comm_costs_from_descs(
            IdentityOpCost, ctx, processes, c_identity_desc_mapping, cluster)
        res.append(comm_op_cost_list)

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        cost_mapping = build_comp_costs_from_descs(MulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)
        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        # calc comm op cost
        serial_op = dist_op.serial_op
        vars = serial_op.block.vars

        parallel_axis = dist_op.dist_attr.get_input_dims_mapping(
            serial_op.input("Y")[0])[-2]
        attrs = {"use_calc_stream": True, "use_model_parallel": True}

        var_names = serial_op.output("Out")
        c_allreduce_sum_desc_mapping = build_comm_desc_from_dist_op(
            "c_allreduce_sum",
            dist_op,
            ctx,
            var_names,
            attrs=attrs,
            parallel_axis=parallel_axis)

        # print("dist_matmul.py dist_op: ", dist_op)
        comm_op_cost_list = build_comm_costs_from_descs(
            AllreduceSumOpCost, ctx, processes, c_allreduce_sum_desc_mapping,
            cluster)

        res_cost = [cost_mapping, comm_op_cost_list]

        return res_cost

2454 2455 2456 2457 2458 2459 2460 2461 2462
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)
        if is_dim_replicate(x_dims_mapping[-1]):
            return False
2463 2464
        if is_dim_replicate(y_dims_mapping[-2]) or is_dim_shard(
                y_dims_mapping[-1]):
2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in x_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)
        if is_dim_shard(out_dims_mapping[-1]):
            return False
        # Other dimensions must be replicate except the batch dimension
        for mapping in out_dims_mapping[1:-1]:
            if is_dim_shard(mapping):
                return False
        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        if not _is_auto_compatible_for_matmul(dist_op):
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
        if dim_changed:
            changed = True
        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        """
        kwargs: inputname_mapping & outputname_mapping
        """

        dist_op_context = ctx.dist_op_context
        main_block = dist_op_context.work_block
        startup_block = dist_op_context.startup_block
        src_op = dist_op_context.cur_src_op
        rank_id = dist_op_context.rank_id
        op_dist_attr = ctx.get_op_dist_attr_for_program(src_op)
        assert op_dist_attr is not None, "backward op [{}] don't have dist attribute !".format(
            str(src_op))

        # FIXME (JZ-LIANG) Remove this hack to support any op mesh group for Pipeline Parallelism
        if rank_id not in op_dist_attr.process_mesh.processes:
            rank_id = _get_corresponding_rank(ctx, op_dist_attr.process_mesh,
                                              rank_id)

        # check validation of inputs / outputs
        for input_name in src_op.desc.input_names():
            assert input_name in kwargs, "input [{}] is not given".format(
                input_name)
            assert len(kwargs[input_name]) == len(
                src_op.desc.input(input_name)
            ), "number of tensor for input [{}] is not match".format(input_name)
        for output_name in src_op.desc.output_names():
            assert output_name in kwargs, "input [{}] is not given".format(
                output_name)
            assert len(kwargs[output_name]) == len(
                src_op.desc.output(output_name)
            ), "number of tensor for input [{}] is not match".format(
                output_name)

        X_var = main_block.var(kwargs['X'][0])
        Weight_var = main_block._var_recursive(kwargs['Y'][0])
        Out_var = main_block.var(kwargs['Out'][0])

        # TODO infer logic comm presentation
        matmul_row_dim_mapping = op_dist_attr.get_input_dims_mapping(
            Weight_var.name)[-2]
        assert matmul_row_dim_mapping >= 0, "row_parallel_matmul's row should be divided by a specific mesh axis, but got [{}]".format(
            matmul_row_dim_mapping)
        process_mesh_shape = op_dist_attr.process_mesh.topology
        process_mesh_group = op_dist_attr.process_mesh.processes

        parallel_axis = matmul_row_dim_mapping
        group_ranks = _get_comm_group(process_mesh_group, process_mesh_shape,
                                      parallel_axis, rank_id)
        group = new_process_group(group_ranks)

        check_variable_and_dtype(X_var, 'x', ['float16', 'float32', 'float64'],
                                 'linear')
        check_dtype(X_var.dtype, 'dtype', ['float16', 'float32', 'float64'],
                    'linear')
        # attrs = {'trans_x': False, 'trans_y': False}
        attrs = {
            "x_num_col_dims": src_op.desc.attr("x_num_col_dims"),
2561 2562
            "y_num_col_dims": src_op.desc.attr("y_num_col_dims"),
            OP_ROLE_KEY: src_op.attr('op_role')
2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574
        }
        inputs = {'X': X_var, 'Y': Weight_var}

        # infer out var shape with op dist attr
        out_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(Out_var)
        assert out_tensor_dist_attr is not None
        out_var_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert out_var_dist_attr is not None
        ref_shape = infer_shape(main_block, Out_var, out_tensor_dist_attr,
                                out_var_dist_attr)

        intermediate_var_0 = main_block.create_var(
2575 2576
            name=unique_name.generate_with_ignorable_key(".".join(
                ["c_allreduce_sum", 'tmp'])),
2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587
            shape=Out_var.shape,
            dtype=Out_var.dtype,
            type=Out_var.type,
            lod_level=Out_var.lod_level,
            persistable=False,
            is_data=False,
            need_check_feed=Out_var.desc.need_check_feed())
        # set intermediate_var_0's dist_attr with Out_var's dist_attr
        ctx.set_tensor_dist_attr_for_program(intermediate_var_0,
                                             out_var_dist_attr)

2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600
        inputs_ref_shape = {}
        inputs_original_shape = {}
        for var_name in inputs:
            var = inputs[var_name]
            inputs_original_shape[var_name] = var.shape
            input_tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(var)
            input_var_dist_attr = op_dist_attr.get_input_dist_attr(var.name)
            input_ref_shape = infer_shape(main_block, var,
                                          input_tensor_dist_attr,
                                          input_var_dist_attr)
            inputs_ref_shape[var_name] = input_ref_shape
            var.desc.set_shape(input_ref_shape)

2601 2602 2603 2604
        mul_op = main_block.append_op(type='mul',
                                      inputs=inputs,
                                      outputs={'Out': intermediate_var_0},
                                      attrs=attrs)
2605

2606 2607 2608
        if intermediate_var_0.shape != ref_shape:
            intermediate_var_0.desc.set_shape(ref_shape)

2609 2610 2611 2612 2613
        for var_name in inputs:
            var = inputs[var_name]
            original_shape = inputs_original_shape[var_name]
            var.desc.set_shape(original_shape)

2614 2615 2616 2617 2618 2619 2620
        c_allreduce_sum_op = main_block.append_op(
            type='c_allreduce_sum',
            inputs={'X': intermediate_var_0},
            outputs={'Out': Out_var},
            attrs={
                'ring_id': group.id,
                'use_calc_stream': True,
2621 2622
                'use_model_parallel': True,
                OP_ROLE_KEY: src_op.attr('op_role')
2623
            })
2624

2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679
        if Out_var.shape != ref_shape:
            Out_var.desc.set_shape(ref_shape)

        # set dist op's dist_attr with serial op's dist_attr
        # matmulv2
        matmulv2_op_dist_attr = OperatorDistributedAttribute()
        matmulv2_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        matmulv2_op_dist_attr.impl_type = op_dist_attr.impl_type
        matmulv2_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in mul_op.desc.input_arg_names():
            input_dist_attr = op_dist_attr.get_input_dist_attr(input_varname)
            assert input_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            matmulv2_op_dist_attr.set_input_dist_attr(input_varname,
                                                      input_dist_attr)
        output_varname = mul_op.desc.output_arg_names()[0]
        output_dist_attr = op_dist_attr.get_output_dist_attr(Out_var.name)
        assert output_dist_attr is not None, "dist_attr is {}".format(
            op_dist_attr)
        matmulv2_op_dist_attr.set_output_dist_attr(output_varname,
                                                   output_dist_attr)
        ctx.set_op_dist_attr_for_program(mul_op, matmulv2_op_dist_attr)

        # allreduce
        allreduce_op_dist_attr = OperatorDistributedAttribute()
        allreduce_op_dist_attr.process_mesh = op_dist_attr.process_mesh
        allreduce_op_dist_attr.impl_type = op_dist_attr.impl_type
        allreduce_op_dist_attr.impl_idx = op_dist_attr.impl_idx
        for input_varname in c_allreduce_sum_op.desc.input_arg_names():
            input_var = main_block.var(input_varname)
            tensor_dist_attr = ctx.get_tensor_dist_attr_for_program(input_var)
            assert tensor_dist_attr is not None
            allreduce_op_dist_attr.set_input_dist_attr(input_varname,
                                                       tensor_dist_attr)
        for output_varname in c_allreduce_sum_op.desc.output_arg_names():
            output_dist_attr = op_dist_attr.get_output_dist_attr(output_varname)
            assert output_dist_attr is not None, "dist_attr is {}".format(
                op_dist_attr)
            allreduce_op_dist_attr.set_output_dist_attr(output_varname,
                                                        output_dist_attr)
        ctx.set_op_dist_attr_for_program(c_allreduce_sum_op,
                                         allreduce_op_dist_attr)

        # init param sync
        if Weight_var.is_parameter and not op_dist_attr.is_recompute:
            _init_param_sync(Weight_var, dist_op_context, startup_block, ctx,
                             rank_id)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)


# ReplicateParallel
class DistributedMulImpl2(DistributedOperatorImpl):
2680

2681 2682 2683
    def __init__(self, name):
        super(DistributedMulImpl2, self).__init__(name)

2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736
    def calc_cost(self, op_role, dist_op, ctx, cluster):
        cost = None
        if int(op_role) == int(OpRole.Forward):
            cost = self.calc_fwd_cost(dist_op, ctx, cluster)
        elif int(op_role) == int(OpRole.Backward):
            cost = self.calc_bwd_cost(dist_op, ctx, cluster)
        assert cost is not None
        return cost

    def calc_bwd_cost(self, dist_op, ctx, cluster):
        res = []
        backward_op = dist_op.serial_op
        dist_attr = dist_op.dist_attr
        main_block = backward_op.block
        vars = main_block.vars

        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        process_mesh = dist_attr.process_mesh
        processes = process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MulGradOpCost, ctx,
                                                   processes, desc_mapping,
                                                   cluster)
        res.append(cost_mapping)

        # need gradient allreduce
        var_dim_mapping = dist_attr.get_input_dims_mapping(
            backward_op.input("X")[0])
        mesh_shape = process_mesh.topology
        batch_size_axis = var_dim_mapping[0]
        if batch_size_axis > -1 and mesh_shape[
                batch_size_axis] > 1 and is_parameter_related(
                    backward_op.input("Y")[0], main_block):
            parallel_axis = batch_size_axis
            attrs = {"use_calc_stream": True}
            var_names = [backward_op.output('Y@GRAD')[0]]
            build_dp_costs(res, dist_op, ctx, var_names, attrs, parallel_axis,
                           cluster)

        return res

    def calc_fwd_cost(self, dist_op, ctx, cluster):
        # calc comp op cost
        desc_mapping = build_comp_desc_from_dist_op(dist_op=dist_op,
                                                    dist_context=ctx)
        processes = dist_op.dist_attr.process_mesh.processes
        cost_mapping = build_comp_costs_from_descs(MulOpCost, ctx, processes,
                                                   desc_mapping, cluster)

        res_cost = [cost_mapping]
        return res_cost

2737 2738 2739 2740 2741 2742 2743 2744 2745 2746
    def is_input_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        x_name = op_desc.input('X')[0]
        y_name = op_desc.input('Y')[0]
        x_dims_mapping = op_dist_attr.get_input_dims_mapping(x_name)
        y_dims_mapping = op_dist_attr.get_input_dims_mapping(y_name)

        if is_dim_shard(x_dims_mapping[-1]):
            return False
2747 2748
        if is_valid_list_index(x_dims_mapping, -2) and is_dim_shard(
                x_dims_mapping[-2]):
2749 2750 2751
            return False
        if is_dim_shard(y_dims_mapping[-1]):
            return False
2752 2753
        if is_valid_list_index(y_dims_mapping, -2) and is_dim_shard(
                y_dims_mapping[-2]):
2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766
            return False
        return True

    def is_output_compatible(self, dist_op):
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        op_desc = dist_op.serial_op.desc
        op_dist_attr = dist_op.dist_attr
        out_name = op_desc.output('Out')[0]
        out_dims_mapping = op_dist_attr.get_output_dims_mapping(out_name)

        if is_dim_shard(out_dims_mapping[-1]):
            return False
2767 2768
        if is_valid_list_index(out_dims_mapping, -2) and is_dim_shard(
                out_dims_mapping[-2]):
2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803
            return False

        return True

    def is_auto_compatible(self, dist_op):
        if (not self.is_input_compatible(dist_op)) or \
            (not self.is_output_compatible(dist_op)):
            return False

        if not _is_auto_compatible_for_matmul(dist_op):
            return False

        return True

    def update_dims_mapping(self, dist_op):
        changed = False
        dim_changed = _update_dims_mapping_for_matmul(dist_op)
        if dim_changed:
            changed = True
        return changed

    @staticmethod
    def forward(ctx, *args, **kwargs):
        DistributedDefaultImpl0.forward(ctx, *args, **kwargs)

    @staticmethod
    def backward(ctx, *args, **kwargs):
        _right_operand_parameter_matmul_backward(ctx, *args, **kwargs)


register_distributed_operator_impl("mul",
                                   DistributedMulImpl0("column_parallel"))
register_distributed_operator_impl("mul", DistributedMulImpl1("row_parallel"))
register_distributed_operator_impl("mul",
                                   DistributedMulImpl2("replicate_parallel"))