math_function_test.cc 9.5 KB
Newer Older
1
//  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2 3 4 5 6 7 8 9 10 11 12 13
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//    http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Y
Yi Wang 已提交
14
#include "paddle/fluid/operators/math/math_function.h"
Q
qijun 已提交
15
#include "gtest/gtest.h"
Y
Yu Yang 已提交
16
#include "paddle/fluid/operators/math/blas.h"
Q
qijun 已提交
17

Y
Yu Yang 已提交
18 19 20 21 22 23 24
template <typename T>
inline paddle::operators::math::BlasT<paddle::platform::CPUDeviceContext, T>
GetBlas(const paddle::platform::CPUDeviceContext& context) {
  return paddle::operators::math::GetBlas<paddle::platform::CPUDeviceContext,
                                          T>(context);
}

G
guosheng 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
TEST(math_function, gemm_notrans_cblas) {
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({3, 4}, *cpu_place);
  float arr2[12] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  paddle::platform::CPUDeviceContext context(*cpu_place);
Y
Yu Yang 已提交
45 46
  GetBlas<float>(context).GEMM(false, false, m, n, k, 1, input1_ptr, 3,
                               input2_ptr + 1, 4, 1, input3_ptr + 1, 4);
G
guosheng 已提交
47 48 49 50 51 52 53 54 55 56

  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
}
T
tensor-tang 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
#ifdef PADDLE_WITH_LIBXSMM
template <typename T>
void MklSmmCompare(int m, int n, int k) {
  paddle::framework::Tensor mat_a;
  paddle::framework::Tensor mat_b;
  paddle::framework::Tensor mat_c_smm;
  paddle::framework::Tensor mat_c_mkl;
  auto* cpu_place = new paddle::platform::CPUPlace();

  T* A = mat_a.mutable_data<T>({m, k}, *cpu_place);
  T* B = mat_b.mutable_data<T>({k, n}, *cpu_place);
  T* CSMM = mat_c_smm.mutable_data<T>({m, n}, *cpu_place);
  T* CMKL = mat_c_mkl.mutable_data<T>({m, n}, *cpu_place);
  T alpha = static_cast<T>(1);
  T beta = static_cast<T>(0);
  for (int i = 0; i < mat_a.numel(); ++i) {
    A[i] = static_cast<T>(i);
  }
  for (int i = 0; i < mat_b.numel(); ++i) {
    B[i] = static_cast<T>(i);
  }
T
tensor-tang 已提交
78 79 80 81
  // lda,ldb,ldc follow RowMajor
  int lda = k;
  int ldb = n;
  int ldc = n;
T
tensor-tang 已提交
82

T
tensor-tang 已提交
83
  auto smm = [&, m, n, k, lda, ldb, ldc, alpha, beta]() {
T
tensor-tang 已提交
84 85
    const char transa = 'N';
    const char transb = 'N';
86 87
    paddle::operators::math::CBlas<T>::SMM_GEMM(&transa, &transb, &n, &m, &k,
                                                &alpha, B, &ldb, A, &lda, &beta,
T
tensor-tang 已提交
88 89 90
                                                CSMM, &ldc);
  };

T
tensor-tang 已提交
91
  auto mkl = [&, m, n, k, lda, ldb, ldc, alpha, beta]() {
T
tensor-tang 已提交
92 93 94 95
    paddle::operators::math::CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans,
                                            CblasNoTrans, m, n, k, alpha, A,
                                            lda, B, ldb, beta, CMKL, ldc);
  };
T
tensor-tang 已提交
96

T
tensor-tang 已提交
97 98 99 100 101 102 103 104 105 106
  smm();
  mkl();
  ASSERT_EQ(mat_c_mkl.numel(), mat_c_smm.numel());
  for (int i = 0; i < mat_c_mkl.numel(); ++i) {
    EXPECT_FLOAT_EQ(CSMM[i], CMKL[i]);
  }
}
TEST(math_function, gemm_mkl_vs_smm) {
  MklSmmCompare<float>(1, 2, 3);
  MklSmmCompare<double>(1, 2, 3);
T
tensor-tang 已提交
107 108
  MklSmmCompare<float>(3, 2, 1);
  MklSmmCompare<double>(3, 2, 1);
T
tensor-tang 已提交
109 110 111 112
  MklSmmCompare<float>(3, 8, 5);
  MklSmmCompare<double>(3, 8, 5);
}
#endif
G
guosheng 已提交
113

T
tensor-tang 已提交
114
TEST(math_function, gemm_trans_cblas) {
G
guosheng 已提交
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
  paddle::framework::Tensor input1;
  paddle::framework::Tensor input2;
  paddle::framework::Tensor input3;

  int m = 2;
  int n = 3;
  int k = 3;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* input1_ptr = input1.mutable_data<float>({2, 3}, *cpu_place);
  float arr1[6] = {0, 1, 2, 3, 4, 5};
  memcpy(input1_ptr, arr1, 6 * sizeof(float));
  float* input2_ptr = input2.mutable_data<float>({4, 3}, *cpu_place);
  float arr2[12] = {0, 4, 8, 1, 5, 9, 2, 6, 10, 3, 7, 11};
  memcpy(input2_ptr, arr2, 12 * sizeof(float));
  float* input3_ptr = input3.mutable_data<float>({2, 4}, *cpu_place);
  float arr3[8] = {0, 1, 2, 3, 4, 5, 6, 7};
  memcpy(input3_ptr, arr3, 8 * sizeof(float));

  paddle::platform::CPUDeviceContext context(*cpu_place);
Y
Yu Yang 已提交
134 135
  GetBlas<float>(context).GEMM(false, true, m, n, k, 1, input1_ptr, 3,
                               input2_ptr + 3, 3, 1, input3_ptr + 1, 4);
136 137
  delete cpu_place;
  cpu_place = NULL;
G
guosheng 已提交
138 139 140 141 142 143 144 145 146 147

  EXPECT_EQ(input3_ptr[0], 0);
  EXPECT_EQ(input3_ptr[1], 24);
  EXPECT_EQ(input3_ptr[2], 28);
  EXPECT_EQ(input3_ptr[3], 32);
  EXPECT_EQ(input3_ptr[4], 4);
  EXPECT_EQ(input3_ptr[5], 73);
  EXPECT_EQ(input3_ptr[6], 86);
  EXPECT_EQ(input3_ptr[7], 99);
}
148 149 150 151 152 153

TEST(math_function, zero) {
  paddle::framework::Tensor tensor;
  auto* cpu_place = new paddle::platform::CPUPlace();
  float* t = tensor.mutable_data<float>({2, 2}, *cpu_place);
  paddle::platform::CPUDeviceContext context(*cpu_place);
Q
QI JUN 已提交
154 155
  paddle::operators::math::SetConstant<paddle::platform::CPUDeviceContext,
                                       float>
Q
qijun 已提交
156 157
      functor;
  functor(context, &tensor, 0);
158 159 160 161 162
  EXPECT_EQ(t[0], 0);
  EXPECT_EQ(t[1], 0);
  EXPECT_EQ(t[2], 0);
  EXPECT_EQ(t[3], 0);

Q
qijun 已提交
163
  functor(context, &tensor, 1);
164 165 166 167 168 169

  EXPECT_EQ(t[0], 1);
  EXPECT_EQ(t[1], 1);
  EXPECT_EQ(t[2], 1);
  EXPECT_EQ(t[3], 1);
}
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190

template <typename T>
void GemvTest(int m, int n, bool trans) {
  paddle::framework::Tensor mat_a;
  paddle::framework::Tensor vec_b;
  paddle::framework::Tensor vec_c;
  auto* cpu_place = new paddle::platform::CPUPlace();
  int b_num = trans ? m : n;
  int c_num = trans ? n : m;

  T* data_a = mat_a.mutable_data<T>({m, n}, *cpu_place);
  T* data_b = vec_b.mutable_data<T>({b_num}, *cpu_place);
  T* data_c = vec_c.mutable_data<T>({c_num}, *cpu_place);
  for (int i = 0; i < mat_a.numel(); ++i) {
    data_a[i] = static_cast<T>(i);
  }
  for (int i = 0; i < vec_b.numel(); ++i) {
    data_b[i] = static_cast<T>(i);
  }

  paddle::platform::CPUDeviceContext context(*cpu_place);
Y
Yu Yang 已提交
191 192
  GetBlas<T>(context).GEMV(trans, static_cast<int>(m), static_cast<int>(n), 1.,
                           data_a, data_b, 0., data_c);
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

  if (!trans) {
    for (int i = 0; i < m; ++i) {
      T sum = 0.0;
      for (int j = 0; j < n; ++j) {
        sum += data_a[i * n + j] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  } else {
    for (int i = 0; i < n; ++i) {
      T sum = 0.0;
      for (int j = 0; j < m; ++j) {
        sum += data_a[j * n + i] * data_b[j];
      }
      ASSERT_FLOAT_EQ(data_c[i], sum);
    }
  }
}

TEST(math_function, gemv) {
  GemvTest<float>(3, 13, false);
  GemvTest<double>(4, 5, false);
  GemvTest<float>(12, 7, true);
  GemvTest<double>(7, 9, true);
}
219 220 221 222 223 224 225 226

TEST(math_funciton, set_constant) {
  paddle::framework::Tensor t;
  t.Resize({10, 10});
  t.mutable_data<int>(paddle::platform::CPUPlace());
  auto* ctx = new paddle::platform::CPUDeviceContext();
  paddle::operators::math::set_constant(*ctx, &t, 10);
  for (int64_t i = 0; i < t.numel(); ++i) {
227 228 229 230 231
    PADDLE_ENFORCE_EQ(10, t.data<int>()[i],
                      paddle::platform::errors::InvalidArgument(
                          "Each value of input"
                          "tensor should be 10, but received %d.",
                          t.data<int>()[i]));
232 233 234
  }
  delete ctx;
}
T
tensor-tang 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

template <typename T>
void GemmWarpTest(int m, int n, int k, T alpha, T beta) {
  paddle::framework::Tensor mat_a;
  paddle::framework::Tensor mat_b;
  paddle::framework::Tensor mat_c_ref;
  paddle::framework::Tensor mat_c_mkl;
  auto* cpu_place = new paddle::platform::CPUPlace();

  T* A = mat_a.mutable_data<T>({m, k}, *cpu_place);
  T* B = mat_b.mutable_data<T>({k, n}, *cpu_place);
  T* CREF = mat_c_ref.mutable_data<T>({m, n}, *cpu_place);
  T* CMKL = mat_c_mkl.mutable_data<T>({m, n}, *cpu_place);

  ASSERT_EQ(mat_c_mkl.numel(), mat_c_ref.numel());
  for (int i = 0; i < mat_a.numel(); ++i) {
    A[i] = static_cast<T>(i);
  }
  for (int i = 0; i < mat_b.numel(); ++i) {
    B[i] = static_cast<T>(i + 1);
  }
  for (int i = 0; i < mat_c_ref.numel(); ++i) {
    CREF[i] = static_cast<T>(i + 2);
    CMKL[i] = CREF[i];
  }

  // this would call gemm_warp
  paddle::platform::CPUDeviceContext context(*cpu_place);
  GetBlas<T>(context).GEMM(CblasNoTrans, CblasNoTrans, m, n, k, alpha, A, B,
                           beta, CREF);

  // lda,ldb,ldc follow RowMajor
  int lda = k;
  int ldb = n;
  int ldc = n;
  paddle::operators::math::CBlas<T>::GEMM(CblasRowMajor, CblasNoTrans,
                                          CblasNoTrans, m, n, k, alpha, A, lda,
                                          B, ldb, beta, CMKL, ldc);

  for (int i = 0; i < mat_c_mkl.numel(); ++i) {
    EXPECT_FLOAT_EQ(CREF[i], CMKL[i]);
  }
}

TEST(math_function, gemm_warp) {
  GemmWarpTest<float>(3, 2, 5, 1.f, 0.f);
  GemmWarpTest<float>(3, 2, 5, 2.f, 1.f);
  GemmWarpTest<float>(8, 5, 6, 1.f, 0.f);
  GemmWarpTest<float>(8, 5, 6, 2.f, 1.f);
  GemmWarpTest<double>(3, 2, 5, 1.0, 0.0);
  GemmWarpTest<double>(3, 2, 5, 2.0, 1.0);
  GemmWarpTest<double>(8, 5, 6, 1.0, 0.0);
  GemmWarpTest<double>(8, 5, 6, 2.0, 1.0);
}