device_context.cc 23.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
qijun 已提交
2 3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
6

Q
qijun 已提交
7 8 9 10 11
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Y
Yi Wang 已提交
12
#include "paddle/fluid/platform/device_context.h"
13
#include <set>
14

15
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
16
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
S
sneaxiy 已提交
17
#include "paddle/fluid/platform/cuda_device_guard.h"
18
#endif
19

20 21
#include "glog/logging.h"

22 23 24 25 26
namespace paddle {
namespace memory {

AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
  auto place = dev_ctx.GetPlace();
27
  if (size == 0) {
28 29
    return Alloc(place, size);
  }
30 31

  if (platform::is_gpu_place(place)) {
32
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
    auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto& desired_dev_ctx =
        static_cast<const platform::CUDADeviceContext&>(dev_ctx);
    if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
      return Alloc(place, size);
    } else {
      return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
          desired_dev_ctx, size);
    }
#else
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use CUDA device since it's not compiled with CUDA,"
        "Please recompile or reinstall Paddle with GPU support."));
#endif
  } else if (platform::is_xpu_place(place)) {
#ifdef PADDLE_WITH_XPU
    // TODO(liuyuhui): Consider xpu stream later
51 52
    return Alloc(place, size);
#else
53 54 55
    PADDLE_THROW(platform::errors::PermissionDenied(
        "Paddle can't use XPU device since it's not compiled with XPU,"
        "Please recompile or reinstall Paddle with XPU support."));
56
#endif
57 58 59
  } else {
    return Alloc(place, size);
  }
60 61 62 63 64
}

}  // namespace memory
}  // namespace paddle

Q
qijun 已提交
65 66 67
namespace paddle {
namespace platform {

68
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
69 70 71
bool allow_tf32_cublas = true;
void SetAllowTF32Cublas(bool active) { allow_tf32_cublas = active; }
bool AllowTF32Cublas() { return allow_tf32_cublas; }
A
AshburnLee 已提交
72 73 74 75

bool allow_tf32_cudnn = true;
void SetAllowTF32Cudnn(bool active) { allow_tf32_cudnn = active; }
bool AllowTF32Cudnn() { return allow_tf32_cudnn; }
76 77
#endif  // PADDLE_WITH_CUDA

D
dzhwinter 已提交
78 79
DeviceContextPool* DeviceContextPool::pool = nullptr;

Y
Yu Yang 已提交
80
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
D
dzhwinter 已提交
81 82
  auto it = device_contexts_.find(place);
  if (it == device_contexts_.end()) {
G
GaoWei8 已提交
83 84
    PADDLE_THROW(platform::errors::Unimplemented(
        "Place %s is not supported. Please check that your paddle compiles "
85 86
        "with WITH_GPU or WITH_XPU option or check that your train process "
        "hold the "
G
GaoWei8 已提交
87 88
        "correct gpu_id if you use Executor.",
        place));
D
dzhwinter 已提交
89
  }
90
  return it->second.get().get();
D
dzhwinter 已提交
91 92
}

93 94 95 96 97 98 99 100 101
template <typename DevCtx, typename PlaceType>
inline void EmplaceDeviceContext(
    std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
        map_ptr,
    platform::Place p) {
  using PtrType = std::unique_ptr<DeviceContext>;
  map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
                     // lazy evaluation. i.e., only create device context at
                     // first `Get`
102
                     return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
103
                   }));
C
chengduozh 已提交
104 105
}

D
dzhwinter 已提交
106 107
DeviceContextPool::DeviceContextPool(
    const std::vector<platform::Place>& places) {
G
GaoWei8 已提交
108 109 110 111 112
  PADDLE_ENFORCE_GT(
      places.size(), 0,
      platform::errors::InvalidArgument("The number of platform places should "
                                        "be larger than 0. But received %d.",
                                        places.size()));
113
  std::set<Place> set;
Y
Yu Yang 已提交
114 115 116 117 118
  for (auto& p : places) {
    set.insert(p);
  }
  for (auto& p : set) {
    if (platform::is_cpu_place(p)) {
119
#ifdef PADDLE_WITH_MKLDNN
120
      EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
121
#else
122
      EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
123
#endif
Y
Yu Yang 已提交
124
    } else if (platform::is_gpu_place(p)) {
125
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
126
      EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
D
dzhwinter 已提交
127
#else
G
GaoWei8 已提交
128 129 130
      PADDLE_THROW(
          platform::errors::Unimplemented("CUDAPlace is not supported. Please "
                                          "re-compile with WITH_GPU option."));
C
chengduoZH 已提交
131 132
#endif
    } else if (platform::is_cuda_pinned_place(p)) {
133
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
134 135
      EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
          &device_contexts_, p);
C
chengduoZH 已提交
136
#else
G
GaoWei8 已提交
137
      PADDLE_THROW(platform::errors::Unimplemented(
G
GaoWei8 已提交
138 139
          "CUDAPlace is not supported. Please re-compile with WITH_GPU "
          "option."));
140 141 142 143 144 145 146 147
#endif
    } else if (platform::is_xpu_place(p)) {
#ifdef PADDLE_WITH_XPU
      EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
#else
      PADDLE_THROW(
          platform::errors::Unimplemented("XPUPlace is not supported. Please "
                                          "re-compile with WITH_XPU option."));
D
dzhwinter 已提交
148 149 150 151 152
#endif
    }
  }
}

153 154 155 156
CPUDeviceContext::CPUDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

D
dzhwinter 已提交
157
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
158 159 160 161 162 163 164
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

D
dzhwinter 已提交
165
Place CPUDeviceContext::GetPlace() const { return place_; }
166

167 168 169
#ifdef PADDLE_WITH_XPU
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }

170
XPUDeviceContext::~XPUDeviceContext() {}
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
  int dev_id = -1;
  int ret = xpu_current_device(&dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
  ret = xpu_set_device(place.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
186 187 188

  LOG_FIRST_N(WARNING, 1) << "Please NOTE: xpu device: " << place_.device;

189
  context_ = xpu::create_context();
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
  const int MAX_XPU_NUM = 16;
  const int l3_size = 13.5 * 1024 * 1024;
  static void* l3ptrs[MAX_XPU_NUM] = {nullptr};

  auto selected_xpus = GetXPUSelectedDevices();
  for (unsigned int i = 0; i < selected_xpus.size(); i++) {
    if (place.device == selected_xpus[i]) {
      if (l3ptrs[place.device] == nullptr) {
        xpu_malloc(static_cast<void**>(&l3ptrs[place.device]), l3_size,
                   XPU_MEM_L3);
      }
      if (l3ptrs[place.device] != nullptr) {
        context_->_l3_mgr.set(l3ptrs[place.device], l3_size);
        VLOG(3) << "xpu place " << place.device << " set l3 size " << l3_size;
      }
      break;
    }
207
  }
208

209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
  ret = xpu_set_device(dev_id);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
}

void XPUDeviceContext::Wait() const {
  int ret = xpu_set_device(place_.device);
  PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
                    platform::errors::External(
                        "XPU API return wrong value[%d], please check whether "
                        "Baidu Kunlun Card is properly installed.",
                        ret));
224
  xpu_wait(context_->xpu_stream);
225 226 227 228 229 230 231
}

Place XPUDeviceContext::GetPlace() const { return place_; }

xpu::Context* XPUDeviceContext::x_context() const { return context_; }
#endif

232
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
233

Q
init  
qijun 已提交
234 235 236 237 238 239 240
class EigenCudaStreamDevice : public Eigen::StreamInterface {
 public:
  EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
    Eigen::initializeDeviceProp();
  }
  ~EigenCudaStreamDevice() override {}

241
  void Reinitialize(const gpuStream_t* cuda_stream, CUDAPlace place) {
Q
init  
qijun 已提交
242 243 244 245 246
    stream_ = cuda_stream;
    place_ = place;
    device_prop_ = &Eigen::m_deviceProperties[place.device];
  }

247
  const gpuStream_t& stream() const override { return *stream_; }
Q
init  
qijun 已提交
248

249 250 251
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t& deviceProperties() const override {
#else
Q
init  
qijun 已提交
252
  const cudaDeviceProp& deviceProperties() const override {
253
#endif
Q
init  
qijun 已提交
254 255 256 257
    return *device_prop_;
  }

  void* allocate(size_t num_bytes) const override {
S
sneaxiy 已提交
258 259 260
    if (UNLIKELY(num_bytes == 0)) {
      return nullptr;
    }
261 262 263
    auto buf = memory::Alloc(place_, num_bytes);
    VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
            << " requested " << num_bytes;
264
    void* retv = buf->ptr();
S
sneaxiy 已提交
265 266 267 268
    {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.emplace(retv, std::move(buf));
    }
269
    return retv;
Q
init  
qijun 已提交
270 271
  }

S
sneaxiy 已提交
272 273 274 275 276 277
  void deallocate(void* buffer) const override {
    if (LIKELY(buffer)) {
      std::lock_guard<std::mutex> lock(mtx_);
      allocations_.erase(buffer);
    }
  }
Q
init  
qijun 已提交
278 279 280

  void* scratchpad() const override {
    if (scratch_ == NULL) {
Z
Zhang Ting 已提交
281 282 283 284
// windows use an old version of eigen that uses kCudaScratchSize,
// once windows updates eigen to a recent version, the following code
// can use kGpuScratchSize uniformly
#ifdef _WIN32
Q
init  
qijun 已提交
285
      scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
Z
Zhang Ting 已提交
286 287 288
#else
      scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
#endif
Q
init  
qijun 已提交
289 290 291 292 293 294
    }
    return scratch_;
  }

  unsigned int* semaphore() const override {
    if (semaphore_ == NULL) {
Z
Zhang Ting 已提交
295
#ifdef _WIN32
Q
init  
qijun 已提交
296 297
      char* scratch =
          static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
Z
Zhang Ting 已提交
298 299 300
#else
      char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
#endif
Q
init  
qijun 已提交
301
      semaphore_ = reinterpret_cast<unsigned int*>(scratch);
302 303 304 305
#ifdef PADDLE_WITH_HIP
      PADDLE_ENFORCE_CUDA_SUCCESS(
          hipMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
#else
306
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
init  
qijun 已提交
307
          cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
308
#endif
Q
init  
qijun 已提交
309 310 311 312 313
    }
    return semaphore_;
  }

 private:
D
dzhwinter 已提交
314
  CUDAPlace place_;
315 316 317 318
  const gpuStream_t* stream_;  // not owned;
#ifdef PADDLE_WITH_HIP
  const hipDeviceProp_t* device_prop_;
#else
Q
init  
qijun 已提交
319
  const cudaDeviceProp* device_prop_;  // not owned;
320
#endif
Q
qijun 已提交
321
  mutable void* scratch_;
Q
init  
qijun 已提交
322
  mutable unsigned int* semaphore_;
S
sneaxiy 已提交
323
  mutable std::mutex mtx_;  // to protect allocations_
Y
Yu Yang 已提交
324
  mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
Q
init  
qijun 已提交
325 326
};

327 328 329 330 331 332 333 334 335
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
  if (required_workspace_bytes <= WorkspaceSize()) {
    return;
  }
  // reset allocation first before re-allocate to save memory
  allocation_.reset();
  allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
}

336 337 338 339 340 341 342 343 344 345 346 347
thread_local std::unordered_map<const CUDADeviceContext*,
                                std::shared_ptr<CUDAContext>>
    CUDADeviceContext::thread_ctx_;
thread_local std::mutex CUDADeviceContext::ctx_mtx_;

void CUDAContext::InitEigenContext() {
  eigen_stream_.reset(new EigenCudaStreamDevice());
  eigen_stream_->Reinitialize(&RawStream(), place_);
  eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
}

CUDAContext::CUDAContext(const CUDAPlace& place,
348
                         const stream::Priority& priority) {
349 350 351 352 353 354
  place_ = place;
  CUDADeviceGuard guard(place_.device);
  stream_.reset(new stream::CUDAStream(place, priority));
  InitEigenContext();
  InitCuBlasContext();
  InitCuDNNContext();
355
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
356
  InitCuSolverContext();
357
#endif
358 359 360 361 362 363
}

CUDAContext::~CUDAContext() {
  CUDADeviceGuard guard(place_.device);
  DestoryCuDNNContext();
  DestoryCuBlasContext();
364
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
365
  DestoryCuSolverContext();
366
#endif
367 368
}

369
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
Y
Yu Yang 已提交
370
  CUDADeviceGuard guard(place_.device);
C
chengduo 已提交
371 372 373
  compute_capability_ = GetCUDAComputeCapability(place_.device);
  multi_process_ = GetCUDAMultiProcessors(place_.device);
  max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
374
  max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
375
  max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
376

C
chengduo 已提交
377 378 379
  driver_version_ = GetCUDADriverVersion(place_.device);
  runtime_version_ = GetCUDARuntimeVersion(place_.device);

380
  LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
381 382 383
                          << ", GPU Compute Capability: "
                          << compute_capability_ / 10 << "."
                          << compute_capability_ % 10
C
chengduo 已提交
384
                          << ", Driver API Version: " << driver_version_ / 1000
385
                          << "." << (driver_version_ % 100) / 10
C
chengduo 已提交
386 387 388
                          << ", Runtime API Version: "
                          << runtime_version_ / 1000 << "."
                          << (runtime_version_ % 100) / 10;
389 390 391 392 393 394 395 396
#ifdef PADDLE_WITH_HIP
  size_t version_major, version_minor, version_patch;
  PADDLE_ENFORCE_CUDA_SUCCESS(dynload::miopenGetVersion(
      &version_major, &version_minor, &version_patch));
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", MIOpen Version: " << version_major << "."
                          << version_minor << "." << version_patch;
#else
397 398 399
  size_t cudnn_dso_ver = dynload::cudnnGetVersion();
  LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
                          << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
400
                          << (cudnn_dso_ver % 1000) / 100 << ".";
401
#endif
S
sneaxiy 已提交
402 403
  {
    // Check CUDA/CUDNN version compatiblity
404 405
    auto local_cuda_version =
        (driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
406 407 408
#ifdef PADDLE_WITH_HIP
    auto compile_cuda_version = (HIP_VERSION / 100) * 10 + (HIP_VERSION % 10);
#else
409 410
    auto compile_cuda_version =
        (CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
411
#endif
S
sneaxiy 已提交
412 413 414 415 416 417 418 419 420 421 422 423
    if (local_cuda_version < compile_cuda_version) {
      LOG_FIRST_N(WARNING, 1)
          << "WARNING: device: " << place_.device
          << ". The installed Paddle is compiled with CUDA "
          << compile_cuda_version / 10 << "." << compile_cuda_version % 10
          << ", but CUDA runtime version in your machine is "
          << local_cuda_version / 10 << "." << local_cuda_version % 10
          << ", which may cause serious incompatible bug. "
          << "Please recompile or reinstall Paddle with compatible CUDA "
             "version.";
    }
  }
424
  default_ctx_.reset(new CUDAContext(place_));
425 426 427 428
}

CUDADeviceContext::~CUDADeviceContext() {
  SetDeviceId(place_.device);
429
#if defined(PADDLE_WITH_NCCL) || defined(PADDLE_WITH_RCCL)
430 431 432 433
  if (nccl_comm_) {
    PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
  }
#endif
434 435
}

L
liaogang 已提交
436
Place CUDADeviceContext::GetPlace() const { return place_; }
437

438
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
439

K
Kexin Zhao 已提交
440
int CUDADeviceContext::GetComputeCapability() const {
C
chengduo 已提交
441
  return compute_capability_;
K
Kexin Zhao 已提交
442 443
}

444
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
C
chengduo 已提交
445
  return multi_process_ * max_threads_per_mp_;
446 447
}

448 449 450 451 452 453
int CUDADeviceContext::GetSMCount() const { return multi_process_; }

int CUDADeviceContext::GetMaxThreadsPerBlock() const {
  return max_threads_per_block_;
}

454
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
455
  return context()->EigenDevice().get();
456 457
}

458
bool CUDADeviceContext::tensor_core_available() const {
459
  return context()->CublasTensorCoreHandle() != nullptr;
S
sneaxiy 已提交
460 461
}

462 463 464 465
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
  return max_grid_dim_size_;
}

466 467 468
#ifdef PADDLE_WITH_HIP
miopenHandle_t CUDADeviceContext::cudnn_handle() const {
#else
469
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
470
#endif
471 472
  return context()->CudnnHandle();
}
473

S
sneaxiy 已提交
474
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
475
  return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
476
}
477

478
#ifndef PADDLE_WITH_HIP
G
Guo Sheng 已提交
479 480 481
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
  return context()->CusolverDnHandle();
}
482
#endif
G
Guo Sheng 已提交
483

484
gpuStream_t CUDADeviceContext::stream() const { return context()->RawStream(); }
Q
qijun 已提交
485

C
chengduoZH 已提交
486 487 488 489 490 491 492 493 494 495 496 497 498 499
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
    : place_(place) {
  eigen_device_.reset(new Eigen::DefaultDevice());
}

Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
  return eigen_device_.get();
}

Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
L
Luo Tao 已提交
500
#endif
Q
qijun 已提交
501

T
tensor-tang 已提交
502 503
#ifdef PADDLE_WITH_MKLDNN
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
504
    : CPUDeviceContext(place), p_blobmap_() {
505 506
  p_blobmap_.reset(new BlobMap());
  p_mutex_.reset(new std::mutex());
T
tensor-tang 已提交
507 508
}

509 510
MKLDNNDeviceContextThreadLocals::Body::Body()
    : cur_engine(mkldnn::engine::kind::cpu, 0), cur_stream(cur_engine) {
511 512 513 514 515 516
  cur_mkldnn_session_id = kMKLDNNSessionID_Default;
  cur_input_shape_str = "";
  cur_input_shape_cache_capacity = 1;
  cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
}

517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
// When Thread finish we clear oneDNN cache
// This is needed when we have one executor used by many threads
// e.g. test_analyzer_detect. Thread ID is not part of caching key
// (for naive executor) so we need to clear cache when one thread finish
// and other is to start inference
// TODO(jczaja): Ideally it would be good to clear only part of cache
// related to thread that is to be terminated
MKLDNNDeviceContextThreadLocals::Body::~Body() {
  auto cpu_place = paddle::platform::CPUPlace();
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  platform::MKLDNNDeviceContext* dev_ctx =
      (platform::MKLDNNDeviceContext*)pool.Get(cpu_place);
  dev_ctx->ResetBlobMap();
}

532 533 534 535 536 537 538 539 540 541
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
    size_t sid) {
  cur_mkldnn_session_id = sid;
}
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
  return cur_mkldnn_session_id;
}

void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
    std::string input_shape_str) {
542 543
  cur_input_shape_str = input_shape_str;
}
544 545
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
    int input_shape_cache_capacity) {
546 547
  cur_input_shape_cache_capacity = input_shape_cache_capacity;
}
S
Sylwester Fraczek 已提交
548

549 550
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
    framework::DataLayout dl) {
551 552 553
  cur_paddle_data_layout = dl;
}

554 555
framework::DataLayout
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
556 557 558
  return cur_paddle_data_layout;
}

559 560 561 562 563 564 565 566 567
void MKLDNNDeviceContextThreadLocals::Body::log_lib_version(void) {
  if (!said_once) {
    said_once = true;
    auto dv = dnnl::version();
    LOG(INFO) << "oneDNN v" << dv->major << "." << dv->minor << "."
              << dv->patch;
  }
}

568 569 570 571 572 573 574 575
const mkldnn::engine& MKLDNNDeviceContextThreadLocals::Body::get_engine(void) {
  return cur_engine;
}

mkldnn::stream& MKLDNNDeviceContextThreadLocals::Body::get_stream(void) {
  return cur_stream;
}

576 577 578 579 580 581 582 583 584 585 586 587 588 589 590
void MKLDNNDeviceContext::ResetBlobMap() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  if (!block_next_cache_clearing_) {
    VLOG(3) << "Clearing DNNL cache.";
    p_blobmap_->clear();
  } else {
    VLOG(3) << "Prevented Clearing DNNL cache.";
    block_next_cache_clearing_ = false;
  }
}

void MKLDNNDeviceContext::BlockNextCacheClearing() {
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
  VLOG(3) << "Next DNNL cache clearing has been blocked.";
  block_next_cache_clearing_ = true;
591
}
592

593
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
594
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
595
  BlobMap* pMap = p_blobmap_.get();
596
  auto map_it = pMap->find(tls().cur_mkldnn_session_id);
597
  if (map_it == pMap->end()) {
598 599 600
    PADDLE_THROW(platform::errors::NotFound(
        "MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
        tls().cur_mkldnn_session_id));
601 602 603 604
  }
  return map_it->second->size();
}

605
void MKLDNNDeviceContext::SetBlob(const std::string& name,
606
                                  BlobPtr_t<void> data) const {
607
  BlobMap* pMap = p_blobmap_.get();
608 609
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
610

611
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
612

613
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
T
tensor-tang 已提交
614

615 616
  // Find ShapeBlob for current mkldnn session id.
  auto map_it = pMap->find(sid);
617 618 619

  if (map_it == pMap->end()) {
    // 1st time to set blob in current thread
620
    sBlob = std::make_shared<ShapeBlob>();
621 622
    (*pMap)[sid] = sBlob;
    VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
623
  } else {
624
    sBlob = map_it->second;
625
  }
T
tensor-tang 已提交
626

627
  // Find KeyBlob for current input shape
628
  auto key_it = sBlob->find(tls().cur_input_shape_str);
629

630
  if (key_it == sBlob->end()) {
631 632
    // In cache clearing mode, cur_input_shape_cache_capacity defines
    // max pblob capacity
633 634
    if ((static_cast<size_t>(sid) ==
         MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
635
        sBlob->size() &&
636
        (sBlob->size() >=
637
         static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
638 639 640 641
      VLOG(2) << "sid=" << sid
              << ", remove all blobs of shape: " << sBlob->begin()->first;
      sBlob->erase(sBlob->begin()->first);
    }
642 643
    pBlob = std::make_shared<KeyBlob>();
    (*sBlob)[tls().cur_input_shape_str] = pBlob;
644
  } else {
645
    pBlob = key_it->second;
646 647
  }

648 649 650 651 652 653 654
  // Find Blob via name
  auto blob_it = pBlob->find(name);
  if (blob_it == pBlob->end()) {
    (*pBlob)[name] = data;
  } else {
    blob_it->second = data;  // set data to existing blob
  }
655
  VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
656
  // lock will be automatically released when out of scope
657
  return;
T
tensor-tang 已提交
658 659
}

660 661 662 663 664 665 666 667 668 669
unsigned int MKLDNNDeviceContext::GetCachedObjectsNumber(void) {
  unsigned int num_entries = 0;
  for (auto const& l3 : *p_blobmap_) {
    for (auto const& l2 : *(l3.second)) {
      num_entries += (l2.second)->size();
    }
  }
  return num_entries;
}

670
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
671
    const std::string& name) const {
672
  BlobMap* pMap = p_blobmap_.get();
673 674
  BlobPtr_t<ShapeBlob> sBlob = nullptr;
  BlobPtr_t<KeyBlob> pBlob = nullptr;
T
tensor-tang 已提交
675

676
  int sid = tls().get_cur_mkldnn_session_id();
T
tensor-tang 已提交
677

678
  std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
679

680 681
  // Find ShapeBlob for current mkldnn session id firstly
  auto map_it = pMap->find(sid);
682
  if (map_it == pMap->end()) {
683
    VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
684 685 686 687 688
    return nullptr;
  }
  sBlob = map_it->second;

  // Find KeyBlob for current input shape secondly
689
  auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
690
  if (sBlob_it == sBlob->end()) {
691
    VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
692 693 694 695
            << ", miss input_shape_str\n";
    return nullptr;
  }
  pBlob = sBlob_it->second;
696 697 698 699

  // Find Blob via name
  auto key_it = pBlob->find(name);

700
  if (key_it == pBlob->end()) {
701
    VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
702 703
    return nullptr;
  }
704

705
  VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
706 707
  // lock will be automatically released when out of scope
  return key_it->second;
T
tensor-tang 已提交
708 709 710 711
}

#endif

Q
qijun 已提交
712
}  // namespace platform
Q
qijun 已提交
713
}  // namespace paddle