sequence_concat_op.h 6.3 KB
Newer Older
Y
Yancey1989 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include "paddle/framework/op_registry.h"
#include "paddle/operators/strided_memcpy.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;

Y
Yancey1989 已提交
26
// Concat LoD, the initialized LoD of Output is lod(x0),
Y
Yancey1989 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39
// if axis is not 0, the LoD(Out) will be the same as Inputs, if axis is 0:
// Case1:
//  There is one level, the Output LoD will be modified:
//  LoD(x0) = {{0,2,4}}
//  LoD(x1) = {{0,1,5}}
//  LoD(Out) = {{0,3,9}}
// Case2:
//  There is two level, and concat level is 1,
//  the Output LoD will be modified as followed:
//  LoD(x0) = {{0,2,4}, {0,1,2,3,4}}
//  LoD(x1) = {{0,3,5}, {0,1,3,4,5}}
//  LoD(Out) = {{0,5,9}, {0,1,2,4,5,6,7,8,9}}
template <typename T>
Y
Yancey1989 已提交
40
LoD concatLoD(const std::vector<const T*> ins, const size_t axis,
Y
Yancey1989 已提交
41 42 43 44 45
              const size_t level) {
  auto out_lod = ins[0]->lod();
  const size_t n = ins.size();
  if (axis == 0UL) {
    if (level == 0) {
Y
Yancey1989 已提交
46 47
      for (size_t i = 1; i < n; ++i) {
        for (size_t j = 0; j < ins[i]->lod()[0].size(); ++j) {
Y
Yancey1989 已提交
48 49 50 51
          out_lod[0][j] += ins[i]->lod()[0][j];
        }
      }
    } else if (level == 1) {
Y
Yancey1989 已提交
52 53 54 55 56
      PADDLE_ENFORCE_EQ(ins[0]->NumLevels(), 2UL,
                        "If the level is 1, all of the inputs "
                        "should be the the nested sequence.");
      for (size_t i = 1; i < n; ++i) {
        for (size_t j = 0; j < ins[i]->lod()[0].size(); ++j) {
Y
Yancey1989 已提交
57 58
          out_lod[0].push_back(ins[i]->lod()[0][j]);
        }
Y
Yancey1989 已提交
59
        for (size_t j = 0; j < ins[i]->lod()[1].size(); ++j) {
Y
Yancey1989 已提交
60 61 62 63 64 65 66 67 68
          out_lod[1][j] += ins[i]->lod()[1][j];
        }
      }
    }
  }
  return out_lod;
}

template <typename Place, typename T>
Y
Yancey1989 已提交
69
class SequenceConcatOpKernel : public framework::OpKernel<T> {
Y
Yancey1989 已提交
70 71 72 73 74 75 76
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<LoDTensor>("X");
    auto* out = ctx.Output<LoDTensor>("Out");
    const size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
    const size_t level = static_cast<size_t>(ctx.Attr<int>("level"));
    const size_t n = ins.size();
Y
Yancey1989 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

    for (size_t i = 1; i < n; ++i) {
      PADDLE_ENFORCE_EQ(ins[0]->NumLevels(), ins[i]->NumLevels(),
                        "The level number of all the input LoDTensors "
                        "should be the same.");
      PADDLE_ENFORCE_EQ(ins[0]->dims().size(), ins[i]->dims().size(),
                        "The dimensions size of all the input LoDTensors "
                        "should be the same.");

      const size_t dims_size = ins[i]->dims().size();
      for (size_t j = 0; j < dims_size; ++j) {
        if (j == axis) continue;
        PADDLE_ENFORCE_EQ(ins[0]->dims()[j], ins[i]->dims()[j],
                          "The dimensions of all the input LoDTensors "
                          "except for the specify axis should be "
                          "matched exactly.");
      }
    }

Y
Yancey1989 已提交
96
    out->mutable_data<T>(ctx.GetPlace());
Y
Yancey1989 已提交
97
    auto out_lod = concatLoD<LoDTensor>(ins, axis, level);
Y
Yancey1989 已提交
98 99 100
    out->set_lod(out_lod);

    auto out_lod_level = out_lod[level];
Y
Yancey1989 已提交
101
    for (size_t i = 0; i < out_lod_level.size() - 1; ++i) {
Y
Yancey1989 已提交
102 103 104 105 106
      Tensor out_t = out->Slice<T>(static_cast<int>(out_lod_level[i]),
                                   static_cast<int>(out_lod_level[i + 1]));
      auto out_stride = framework::stride(out_t.dims());
      size_t offset = 0;

Y
Yancey1989 已提交
107
      for (size_t j = 0; j < n; ++j) {
Y
Yancey1989 已提交
108 109 110 111 112 113 114 115 116 117 118 119 120 121
        auto in_lod_level = ins[j]->lod()[level];
        auto in_stride = framework::stride(ins[j]->dims());
        Tensor in_t = ins[j]->Slice<T>(static_cast<int>(in_lod_level[i]),
                                       static_cast<int>(in_lod_level[i + 1]));
        size_t axis_dim = in_t.dims()[axis];
        StridedMemcpy<T>(ctx.device_context(), in_t.data<T>(), in_stride,
                         in_t.dims(), out_stride, out_t.data<T>() + offset);
        offset += axis_dim * in_stride[axis];
      }
    }
  }
};

template <typename Place, typename T>
Y
Yancey1989 已提交
122
class SequenceConcatGradOpKernel : public framework::OpKernel<T> {
Y
Yancey1989 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto ins = ctx.MultiInput<framework::LoDTensor>("X");
    auto* out_grad =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto x_grads =
        ctx.MultiOutput<framework::LoDTensor>(framework::GradVarName("X"));
    size_t axis = static_cast<size_t>(ctx.Attr<int>("axis"));
    size_t level = static_cast<size_t>(ctx.Attr<int>("level"));
    const size_t n = x_grads.size();

    // Set Grad(X) LoD as X
    for (size_t i = 0; i < n; i++) {
      x_grads[i]->set_lod(ins[i]->lod());
      x_grads[i]->mutable_data<T>(ctx.GetPlace());
    }

Y
Yancey1989 已提交
140
    auto out_lod = concatLoD<LoDTensor>(ins, axis, level);
Y
Yancey1989 已提交
141 142
    auto out_lod_level = out_lod[level];

Y
Yancey1989 已提交
143
    for (size_t i = 0; i < out_lod_level.size() - 1; ++i) {
Y
Yancey1989 已提交
144 145 146 147 148 149
      Tensor out_grad_t =
          out_grad->Slice<T>(static_cast<int>(out_lod_level[i]),
                             static_cast<int>(out_lod_level[i + 1]));
      auto out_grad_stride = framework::stride(out_grad_t.dims());
      size_t offset = 0;

Y
Yancey1989 已提交
150
      for (size_t j = 0; j < n; ++j) {
Y
Yancey1989 已提交
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        auto x_grad_lod_level = x_grads[j]->lod()[level];
        auto x_grad_stride = framework::stride(x_grads[j]->dims());
        Tensor x_grad_t =
            x_grads[j]->Slice<T>(static_cast<int>(x_grad_lod_level[i]),
                                 static_cast<int>(x_grad_lod_level[i + 1]));
        size_t axis_dim = x_grad_t.dims()[axis];
        StridedMemcpy<T>(ctx.device_context(), out_grad_t.data<T>() + offset,
                         out_grad_stride, out_grad_t.dims(), x_grad_stride,
                         x_grad_t.data<T>());
        offset += axis_dim * out_grad_stride[axis];
      }
    }
  }
};

}  // namespace operators
}  // namespace paddle