test_var_conv_2d.py 10.4 KB
Newer Older
K
Kevin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
19
from op_test import OpTest, skip_check_grad_ci
K
Kevin 已提交
20 21


C
cnn 已提交
22
class TestVarConv2DOp(OpTest):
K
Kevin 已提交
23 24 25 26 27 28 29 30 31
    def setUp(self):
        self.init_op_type()
        self.set_data()
        self.compute()

    def init_op_type(self):
        self.op_type = "var_conv_2d"

    def set_data(self):
32
        input_channel = 8
K
Kevin 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
        output_channel = 2
        filter_size = [2, 3]
        stride = [1, 1]
        row = [2, 4]
        col = [3, 2]
        self.init_data(input_channel, output_channel, filter_size, stride, row,
                       col)

    def init_data(self, input_channel, output_channel, filter_size, stride, row,
                  col):

        feature = [row[i] * col[i] for i in range(len(row))]
        numel = sum(feature) * input_channel
        x_data = np.random.random((numel, 1)).astype('float32')
        x_lod = [[x * input_channel for x in feature]]
        row_data = np.random.random((sum(row), 10)).astype('float32')
        col_data = np.random.random((sum(col), 10)).astype('float32')
        w_shape = (output_channel,
                   input_channel * filter_size[0] * filter_size[1])
        w_data = np.random.random(w_shape).astype('float32')
        self.inputs = {
            'X': (x_data, x_lod),
            'ROW': (row_data, [row]),
            'COLUMN': (col_data, [col]),
            'W': w_data
        }
        self.attrs = {
            'InputChannel': input_channel,
            'OutputChannel': output_channel,
            'StrideH': stride[0],
            'StrideW': stride[1],
            'KernelH': filter_size[0],
            'KernelW': filter_size[1],
        }

    def compute(self):
        in_ch = self.attrs['InputChannel']
        out_ch = self.attrs['OutputChannel']
        kernel_h = self.attrs['KernelH']
        kernel_w = self.attrs['KernelW']
        stride_h = self.attrs['StrideH']
        stride_w = self.attrs['StrideW']
        row_data, row_lod = self.inputs['ROW']
        col_data, col_lod = self.inputs['COLUMN']
        x_data, x_lod = self.inputs['X']
        w_data = self.inputs['W']
        out_data = np.zeros((0, 1)).astype('float32')

        col_res_data, col_res_lod = self.Im2Col()
        out_lod = [[]]
        col_data_offset = 0
        batch_size = len(x_lod[0])
        for idx in range(batch_size):
            width = col_lod[0][idx]
            height = row_lod[0][idx]
            top_im_x = 0
            if width != 0:
                top_im_x = (width - 1) // stride_w + 1
            top_im_y = 0
            if height != 0:
                top_im_y = (height - 1) // stride_h + 1
            top_im_size = top_im_x * top_im_y
            out_lod[0].append(out_ch * top_im_size)
            if top_im_size == 0:
                out_tmp = np.zeros((out_ch * top_im_size, 1)).astype('float32')
            else:
                col_batch_data = col_res_data[col_data_offset:col_data_offset +
                                              col_res_lod[0][idx]]
                gemm_shape = (in_ch * kernel_h * kernel_w, top_im_size)
                col_batch_data = col_batch_data.reshape(gemm_shape)
                out_tmp = np.dot(w_data, col_batch_data).reshape(-1, 1)
            out_data = np.vstack((out_data, out_tmp))

            col_data_offset += col_res_lod[0][idx]

        self.outputs = {
            'Out': (out_data.astype('float32'), out_lod),
            'Col': (col_res_data, col_res_lod)
        }

    def Im2Col(self):
        in_ch = self.attrs['InputChannel']
        kernel_h = self.attrs['KernelH']
        kernel_w = self.attrs['KernelW']
        stride_h = self.attrs['StrideH']
        stride_w = self.attrs['StrideW']
        row_data, row_lod = self.inputs['ROW']
        col_data, col_lod = self.inputs['COLUMN']
        x_data, x_lod = self.inputs['X']
        col_res_lod = [[]]
        top_size = 0
        batch_size = len(x_lod[0])
        for idx in range(batch_size):
            width = col_lod[0][idx]
            height = row_lod[0][idx]
            top_im_x = 0
            if width != 0:
                top_im_x = (width - 1) // stride_w + 1
            top_im_y = 0
            if height != 0:
                top_im_y = (height - 1) // stride_h + 1
            top_x = top_im_x * top_im_y
            top_y = in_ch * kernel_h * kernel_w
            col_res_lod[0].append(top_x * top_y)
            top_size += top_x * top_y

        col_res = np.zeros((top_size, 1)).astype('float32')

        kernel_win_size = kernel_h * kernel_w
        half_kernel_h = kernel_h // 2
        half_kernel_w = kernel_w // 2
        t_offset, b_offset = 0, 0
        for idx in range(batch_size):
            width = col_lod[0][idx]
            height = row_lod[0][idx]
            if width == 0 or height == 0:
                continue
            top_im_x = (width - 1) // stride_w + 1
            top_im_y = (height - 1) // stride_h + 1
            top_x = top_im_x * top_im_y
            for z in range(in_ch):
                row_offset = kernel_win_size * z
                im_offset = z * width * height
                for y in range(0, height, stride_h):
                    for x in range(0, width, stride_w):
                        col_offset = x // stride_w + y // stride_h * top_im_x
                        for ky in range(kernel_h):
                            for kx in range(kernel_w):
                                im_y = y + ky - half_kernel_h
                                im_x = x + kx - half_kernel_w
                                if im_x >= 0 and im_x < width and im_y >= 0 and im_y < height:
                                    col_res[t_offset +
                                        (row_offset + ky * kernel_w + kx) * top_x +
                                        col_offset] = \
                                    x_data[b_offset + im_offset + im_y * width + im_x]

            t_offset += col_res_lod[0][idx]
            b_offset += x_lod[0][idx]

        return col_res, col_res_lod

    def test_check_output(self):
H
hong 已提交
175
        self.check_output(check_dygraph=False)
K
Kevin 已提交
176 177

    def test_check_grad(self):
H
hong 已提交
178 179
        self.check_grad(
            ['X'], 'Out', max_relative_error=0.005, check_dygraph=False)
K
Kevin 已提交
180 181


C
cnn 已提交
182
class TestVarConv2DOpCase1(TestVarConv2DOp):
K
Kevin 已提交
183 184 185 186 187 188
    def set_data(self):
        # set in_ch 1
        input_channel = 1
        output_channel = 2
        filter_size = [2, 3]
        stride = [1, 1]
Z
zhupengyang 已提交
189 190
        row = [1, 10]
        col = [40, 6]
K
Kevin 已提交
191 192 193 194
        self.init_data(input_channel, output_channel, filter_size, stride, row,
                       col)


C
cnn 已提交
195
class TestVarConv2DOpCase2(TestVarConv2DOp):
K
Kevin 已提交
196 197 198 199 200 201
    def set_data(self):
        # set out_ch 1
        input_channel = 2
        output_channel = 1
        filter_size = [3, 3]
        stride = [2, 2]
Z
zhupengyang 已提交
202 203
        row = [6, 7]
        col = [8, 2]
K
Kevin 已提交
204 205 206 207
        self.init_data(input_channel, output_channel, filter_size, stride, row,
                       col)


C
cnn 已提交
208
class TestVarConv2DOpCase3(TestVarConv2DOp):
K
Kevin 已提交
209 210 211 212 213 214
    def set_data(self):
        # set batch 1
        input_channel = 2
        output_channel = 1
        filter_size = [3, 3]
        stride = [2, 2]
Z
zhupengyang 已提交
215 216
        row = [14]
        col = [4]
K
Kevin 已提交
217 218 219 220
        self.init_data(input_channel, output_channel, filter_size, stride, row,
                       col)


C
cnn 已提交
221
class TestVarConv2DOpCase4(TestVarConv2DOp):
K
Kevin 已提交
222 223 224 225 226 227 228 229 230 231 232 233
    def set_data(self):
        # set filter size very large
        input_channel = 3
        output_channel = 4
        filter_size = [6, 6]
        stride = [2, 2]
        row = [4, 7]
        col = [5, 2]
        self.init_data(input_channel, output_channel, filter_size, stride, row,
                       col)


C
cnn 已提交
234
class TestVarConv2DOpCase5(TestVarConv2DOp):
K
Kevin 已提交
235 236
    def set_data(self):
        # set input very small
Z
zhupengyang 已提交
237
        input_channel = 50
K
Kevin 已提交
238 239 240 241 242 243 244 245 246
        output_channel = 3
        filter_size = [3, 3]
        stride = [1, 1]
        row = [1, 1]
        col = [1, 1]
        self.init_data(input_channel, output_channel, filter_size, stride, row,
                       col)


247 248 249
@skip_check_grad_ci(
    reason="[skip shape check] Use shape of input_channel, row and col all is 1 to test special LoDTensor."
)
C
cnn 已提交
250
class TestVarConv2DOpCase6(TestVarConv2DOp):
K
Kevin 已提交
251 252 253 254 255 256 257 258 259 260 261
    def set_data(self):
        input_channel = 1
        output_channel = 3
        filter_size = [3, 3]
        stride = [1, 1]
        row = [1, 1]
        col = [1, 1]
        self.init_data(input_channel, output_channel, filter_size, stride, row,
                       col)


C
cnn 已提交
262
class TestVarConv2DOpCase7(TestVarConv2DOp):
K
Kevin 已提交
263 264 265 266 267 268 269 270 271 272 273
    def set_data(self):
        input_channel = 2
        output_channel = 3
        filter_size = [3, 3]
        stride = [1, 1]
        row = [5, 4]
        col = [6, 7]
        self.init_data(input_channel, output_channel, filter_size, stride, row,
                       col)


C
cnn 已提交
274
class TestVarConv2DApi(unittest.TestCase):
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    def test_api(self):
        import paddle.fluid as fluid

        x = fluid.layers.data(name='x', shape=[1], lod_level=1)
        row = fluid.layers.data(name='row', shape=[6], lod_level=1)
        col = fluid.layers.data(name='col', shape=[6], lod_level=1)
        out = fluid.contrib.var_conv_2d(
            input=x,
            row=row,
            col=col,
            input_channel=3,
            output_channel=5,
            filter_size=[3, 3],
            stride=1)

        place = fluid.CPUPlace()
        x_tensor = fluid.create_lod_tensor(
            np.random.rand(116, 1).astype('float32'), [[60, 56]], place)
        row_tensor = fluid.create_lod_tensor(
            np.random.rand(9, 6).astype('float32'), [[5, 4]], place)
        col_tensor = fluid.create_lod_tensor(
            np.random.rand(13, 6).astype('float32'), [[6, 7]], place)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        ret = exe.run(
            feed={'x': x_tensor,
                  'row': row_tensor,
                  'col': col_tensor},
            fetch_list=[out],
            return_numpy=False)


K
Kevin 已提交
308 309
if __name__ == '__main__':
    unittest.main()