test_nanmean_api.py 4.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#   Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard

np.random.seed(10)


class TestNanmeanAPI(unittest.TestCase):
    # test paddle.tensor.math.nanmean

    def setUp(self):
        self.x_shape = [2, 3, 4, 5]
        self.x = np.random.uniform(-1, 1, self.x_shape).astype(np.float32)
        self.x[0, :, :, :] = np.nan
        self.x_grad = np.array([[np.nan, np.nan, 3.],
                                [0., np.nan, 2.]]).astype(np.float32)
        self.place = paddle.CUDAPlace(0) if core.is_compiled_with_cuda() \
            else paddle.CPUPlace()

    def test_api_static(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', self.x_shape)
            out1 = paddle.nanmean(x)
            out2 = paddle.tensor.nanmean(x)
            out3 = paddle.tensor.math.nanmean(x)
            axis = np.arange(len(self.x_shape)).tolist()
            out4 = paddle.nanmean(x, axis)
            out5 = paddle.nanmean(x, tuple(axis))
            exe = paddle.static.Executor(self.place)
            res = exe.run(feed={'X': self.x},
                          fetch_list=[out1, out2, out3, out4, out5])
        out_ref = np.nanmean(self.x)
        for out in res:
            self.assertEqual(np.allclose(out, out_ref, rtol=1e-04), True)

    def test_api_dygraph(self):
        paddle.disable_static(self.place)

        def test_case(x, axis=None, keepdim=False):
            x_tensor = paddle.to_tensor(x)
            out = paddle.nanmean(x_tensor, axis, keepdim)
            if isinstance(axis, list):
                axis = tuple(axis)
                if len(axis) == 0:
                    axis = None

            out_ref = np.nanmean(x, axis, keepdims=keepdim)
            if np.isnan(out_ref).sum():
                nan_mask = np.isnan(out_ref)
                out_ref[nan_mask] = 0
                out_np = out.numpy()
                out_np[nan_mask] = 0
                self.assertEqual(np.allclose(out_np, out_ref, rtol=1e-04), True)
            else:
                self.assertEqual(
                    np.allclose(
                        out.numpy(), out_ref, rtol=1e-04), True)

        test_case(self.x)
        test_case(self.x, [])
        test_case(self.x, -1)
        test_case(self.x, keepdim=True)
        test_case(self.x, 2, keepdim=True)
        test_case(self.x, [0, 2])
        test_case(self.x, (0, 2))
        test_case(self.x, [0, 1, 2, 3])
        paddle.enable_static()

    def test_errors(self):
        paddle.enable_static()
        with paddle.static.program_guard(paddle.static.Program()):
            x = paddle.fluid.data('X', [10, 12], 'int32')
            self.assertRaises(TypeError, paddle.nanmean, x)

    def test_api_dygraph_grad(self):
        paddle.disable_static(self.place)

        def test_case(x, axis=None, keepdim=False):
            if isinstance(axis, list):
                axis = list(axis)
                if len(axis) == 0:
                    axis = None
            x_tensor = paddle.to_tensor(x, stop_gradient=False)
            y = paddle.nanmean(x_tensor, axis, keepdim)
            dx = paddle.grad(y, x_tensor)[0].numpy()
            sum_dx_ref = np.prod(y.shape)
            if np.isnan(y.numpy()).sum():
                sum_dx_ref -= np.isnan(y.numpy()).sum()
            cnt = paddle.sum(~paddle.isnan(x_tensor),
                             axis=axis,
                             keepdim=keepdim)
            if (cnt == 0).sum():
                dx[np.isnan(dx)] = 0
            sum_dx = dx.sum()
            self.assertEqual(np.allclose(sum_dx, sum_dx_ref, rtol=1e-04), True)

        test_case(self.x)
        test_case(self.x, [])
        test_case(self.x, -1)
        test_case(self.x, keepdim=True)
        test_case(self.x, 2, keepdim=True)
        test_case(self.x, [0, 2])
        test_case(self.x, (0, 2))
        test_case(self.x, [0, 1, 2, 3])

        test_case(self.x_grad)
        test_case(self.x_grad, [])
        test_case(self.x_grad, -1)
        test_case(self.x_grad, keepdim=True)
        test_case(self.x_grad, 0, keepdim=True)
        test_case(self.x_grad, 1)
        test_case(self.x_grad, (0, 1))
        paddle.enable_static()


if __name__ == "__main__":
    unittest.main()