test_math_op_patch.py 13.8 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
2
#
Y
Yang Yu 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
Y
Yang Yu 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
Y
Yang Yu 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
from __future__ import print_function, division
16

Y
Yang Yu 已提交
17
import unittest
18
from decorator_helper import prog_scope
19
import paddle
20
import paddle.fluid as fluid
Y
Yang Yu 已提交
21
import numpy
22
import numpy as np
Y
Yang Yu 已提交
23 24 25


class TestMathOpPatches(unittest.TestCase):
26 27 28
    def setUp(self):
        paddle.enable_static()

29
    @prog_scope()
Y
Yang Yu 已提交
30 31 32
    def test_add_scalar(self):
        a = fluid.layers.data(name="a", shape=[1])
        b = a + 10
33 34 35 36
        ab = fluid.layers.concat(input=[a, b], axis=1)
        c = ab + 10
        d = ab + a
        # e = a + ab
Y
Yang Yu 已提交
37 38 39
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.random(size=[10, 1]).astype('float32')
40 41 42
        b_np, c_np, d_np = exe.run(fluid.default_main_program(),
                                   feed={"a": a_np},
                                   fetch_list=[b, c, d])
Y
Yang Yu 已提交
43
        self.assertTrue(numpy.allclose(a_np + 10, b_np))
44 45 46 47
        ab_np = numpy.concatenate([a_np, b_np], axis=1)
        self.assertTrue(numpy.allclose(ab_np + 10, c_np))
        d_expected = ab_np + numpy.concatenate([a_np, a_np], axis=1)
        self.assertTrue(numpy.allclose(d_expected, d_np))
Y
Yang Yu 已提交
48

49
    @prog_scope()
Y
Yang Yu 已提交
50 51 52 53 54 55 56 57 58 59 60
    def test_radd_scalar(self):
        a = fluid.layers.data(name="a", shape=[1])
        b = 10 + a
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.random(size=[10, 1]).astype('float32')
        b_np = exe.run(fluid.default_main_program(),
                       feed={"a": a_np},
                       fetch_list=[b])
        self.assertTrue(numpy.allclose(a_np + 10, b_np))

61
    @prog_scope()
Y
Yang Yu 已提交
62 63 64 65 66 67 68 69 70 71 72
    def test_sub_scalar(self):
        a = fluid.layers.data(name="a", shape=[1])
        b = a - 10
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.random(size=[10, 1]).astype('float32')
        b_np = exe.run(fluid.default_main_program(),
                       feed={"a": a_np},
                       fetch_list=[b])
        self.assertTrue(numpy.allclose(a_np - 10, b_np))

73
    @prog_scope()
Y
Yang Yu 已提交
74 75 76 77 78 79 80 81 82 83 84
    def test_radd_scalar(self):
        a = fluid.layers.data(name="a", shape=[1])
        b = 10 - a
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.random(size=[10, 1]).astype('float32')
        b_np = exe.run(fluid.default_main_program(),
                       feed={"a": a_np},
                       fetch_list=[b])
        self.assertTrue(numpy.allclose(10 - a_np, b_np))

85
    @prog_scope()
Y
Yang Yu 已提交
86 87 88 89 90 91 92 93 94 95 96
    def test_mul_scalar(self):
        a = fluid.layers.data(name="a", shape=[1])
        b = a * 10
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.random(size=[10, 1]).astype('float32')
        b_np = exe.run(fluid.default_main_program(),
                       feed={"a": a_np},
                       fetch_list=[b])
        self.assertTrue(numpy.allclose(a_np * 10, b_np))

97
    @prog_scope()
Y
Yang Yu 已提交
98 99 100 101 102 103 104 105 106 107 108
    def test_rmul_scalar(self):
        a = fluid.layers.data(name="a", shape=[1])
        b = 10 * a
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.random(size=[10, 1]).astype('float32')
        b_np = exe.run(fluid.default_main_program(),
                       feed={"a": a_np},
                       fetch_list=[b])
        self.assertTrue(numpy.allclose(10 * a_np, b_np))

109
    @prog_scope()
Y
Yang Yu 已提交
110 111 112 113 114 115 116 117 118 119 120
    def test_div_scalar(self):
        a = fluid.layers.data(name="a", shape=[1])
        b = a / 10
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.random(size=[10, 1]).astype('float32')
        b_np = exe.run(fluid.default_main_program(),
                       feed={"a": a_np},
                       fetch_list=[b])
        self.assertTrue(numpy.allclose(a_np / 10, b_np))

121
    @prog_scope()
Y
Yang Yu 已提交
122 123 124 125 126 127 128 129 130 131 132 133
    def test_rdiv_scalar(self):
        a = fluid.layers.data(name="a", shape=[1])
        b = 10 / a
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.random(size=[10, 1]).astype('float32') + 1e-2

        b_np = exe.run(fluid.default_main_program(),
                       feed={"a": a_np},
                       fetch_list=[b])
        self.assertTrue(numpy.allclose(10 / a_np, b_np))

134
    @prog_scope()
Y
Yang Yu 已提交
135 136 137 138 139 140 141 142 143 144 145 146 147 148
    def test_div_two_tensor(self):
        a = fluid.layers.data(name="a", shape=[1])
        b = fluid.layers.data(name="b", shape=[1])
        c = a / b
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.random(size=[10, 1]).astype('float32')
        b_np = numpy.random.random(size=[10, 1]).astype('float32') + 1e-2
        c_np = exe.run(fluid.default_main_program(),
                       feed={"a": a_np,
                             'b': b_np},
                       fetch_list=[c])
        self.assertTrue(numpy.allclose(a_np / b_np, c_np))

149
    @prog_scope()
Y
Yang Yu 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163
    def test_mul_two_tensor(self):
        a = fluid.layers.data(name="a", shape=[1])
        b = fluid.layers.data(name="b", shape=[1])
        c = a * b
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.random(size=[10, 1]).astype('float32')
        b_np = numpy.random.random(size=[10, 1]).astype('float32')
        c_np = exe.run(fluid.default_main_program(),
                       feed={"a": a_np,
                             'b': b_np},
                       fetch_list=[c])
        self.assertTrue(numpy.allclose(a_np * b_np, c_np))

164
    @prog_scope()
Y
Yang Yu 已提交
165 166 167 168 169 170 171 172 173 174 175 176 177 178
    def test_add_two_tensor(self):
        a = fluid.layers.data(name="a", shape=[1])
        b = fluid.layers.data(name="b", shape=[1])
        c = a + b
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.random(size=[10, 1]).astype('float32')
        b_np = numpy.random.random(size=[10, 1]).astype('float32')
        c_np = exe.run(fluid.default_main_program(),
                       feed={"a": a_np,
                             'b': b_np},
                       fetch_list=[c])
        self.assertTrue(numpy.allclose(a_np + b_np, c_np))

179
    @prog_scope()
Y
Yang Yu 已提交
180 181 182 183 184 185 186 187 188 189 190 191 192 193
    def test_sub_two_tensor(self):
        a = fluid.layers.data(name="a", shape=[1])
        b = fluid.layers.data(name="b", shape=[1])
        c = a - b
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.random(size=[10, 1]).astype('float32')
        b_np = numpy.random.random(size=[10, 1]).astype('float32')
        c_np = exe.run(fluid.default_main_program(),
                       feed={"a": a_np,
                             'b': b_np},
                       fetch_list=[c])
        self.assertTrue(numpy.allclose(a_np - b_np, c_np))

194 195 196
    @prog_scope()
    def test_integer_div(self):
        a = fluid.layers.data(name="a", shape=[1], dtype='int64')
S
ShenLiang 已提交
197
        b = a / 7
198 199
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
S
ShenLiang 已提交
200
        a_np = numpy.array([3, 4, 10, 14, 9, 18]).astype('int64')
201 202 203
        b_np, = exe.run(fluid.default_main_program(),
                        feed={"a": a_np},
                        fetch_list=[b])
S
ShenLiang 已提交
204

205 206
        b_np_actual = (a_np / 7).astype('float32')
        self.assertTrue(numpy.allclose(b_np, b_np_actual))
207

208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    @prog_scope()
    def test_equal(self):
        a = fluid.layers.data(name="a", shape=[1], dtype='float32')
        b = fluid.layers.data(name="b", shape=[1], dtype='float32')
        c = (a == b)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.array([3, 4, 10, 14, 9, 18]).astype('float32')
        b_np = numpy.array([3, 4, 11, 15, 8, 18]).astype('float32')

        c_np, = exe.run(fluid.default_main_program(),
                        feed={"a": a_np,
                              "b": b_np},
                        fetch_list=[c])

        self.assertTrue(numpy.array_equal(c_np, a_np == b_np))
        self.assertEqual(c.dtype, fluid.core.VarDesc.VarType.BOOL)

    @prog_scope()
    def test_equal_and_cond(self):
        a = fluid.layers.data(name="a", shape=[1], dtype='float32')
        b = fluid.layers.data(name="b", shape=[1], dtype='float32')

        one = fluid.layers.ones(shape=[1], dtype='int32')
        zero = fluid.layers.zeros(shape=[1], dtype='int32')
        cond = (one == zero)
        c = fluid.layers.cond(cond, lambda: a + b, lambda: a - b)

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.array([3, 4, 10, 14, 9, 18]).astype('float')
        b_np = numpy.array([3, 4, 11, 15, 8, 18]).astype('float')
        c_np, = exe.run(fluid.default_main_program(),
                        feed={"a": a_np,
                              "b": b_np},
                        fetch_list=[c])

        self.assertTrue(numpy.array_equal(c_np, a_np - b_np))

248 249 250 251 252 253 254 255 256 257 258 259 260
    @prog_scope()
    def test_neg(self):
        a = fluid.layers.data(name="a", shape=[10, 1])
        b = -a
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.uniform(-1, 1, size=[10, 1]).astype('float32')

        b_np = exe.run(fluid.default_main_program(),
                       feed={"a": a_np},
                       fetch_list=[b])
        self.assertTrue(numpy.allclose(-a_np, b_np))

261 262 263 264 265 266 267 268 269 270 271 272 273
    @prog_scope()
    def test_astype(self):
        a = fluid.layers.data(name="a", shape=[10, 1])
        b = a.astype('float32')
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        a_np = numpy.random.uniform(-1, 1, size=[10, 1]).astype('float64')

        b_np = exe.run(fluid.default_main_program(),
                       feed={"a": a_np},
                       fetch_list=[b])
        self.assertTrue(numpy.allclose(a_np.astype('float32'), b_np))

274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
    def test_bitwise_and(self):
        x_np = np.random.randint(-100, 100, [2, 3, 5]).astype("int32")
        y_np = np.random.randint(-100, 100, [2, 3, 5]).astype("int32")
        out_np = x_np & y_np

        x = paddle.static.data(name="x", shape=[2, 3, 5], dtype="int32")
        y = paddle.static.data(name="y", shape=[2, 3, 5], dtype="int32")
        z = x & y

        exe = fluid.Executor()
        out = exe.run(fluid.default_main_program(),
                      feed={"x": x_np,
                            "y": y_np},
                      fetch_list=[z])
        self.assertTrue(np.array_equal(out[0], out_np))

    @prog_scope()
    def test_bitwise_or(self):
        x_np = np.random.randint(-100, 100, [2, 3, 5]).astype("int32")
        y_np = np.random.randint(-100, 100, [2, 3, 5]).astype("int32")
        out_np = x_np | y_np

        x = paddle.static.data(name="x", shape=[2, 3, 5], dtype="int32")
        y = paddle.static.data(name="y", shape=[2, 3, 5], dtype="int32")
        z = x | y

        exe = fluid.Executor()
        out = exe.run(fluid.default_main_program(),
                      feed={"x": x_np,
                            "y": y_np},
                      fetch_list=[z])
        self.assertTrue(np.array_equal(out[0], out_np))

    @prog_scope()
    def test_bitwise_xor(self):
        x_np = np.random.randint(-100, 100, [2, 3, 5]).astype("int32")
        y_np = np.random.randint(-100, 100, [2, 3, 5]).astype("int32")
        out_np = x_np ^ y_np

        x = paddle.static.data(name="x", shape=[2, 3, 5], dtype="int32")
        y = paddle.static.data(name="y", shape=[2, 3, 5], dtype="int32")
        z = x ^ y

        exe = fluid.Executor()
        out = exe.run(fluid.default_main_program(),
                      feed={"x": x_np,
                            "y": y_np},
                      fetch_list=[z])
        self.assertTrue(np.array_equal(out[0], out_np))

    @prog_scope()
    def test_bitwise_not(self):
        x_np = np.random.randint(-100, 100, [2, 3, 5]).astype("int32")
        out_np = ~x_np

        x = paddle.static.data(name="x", shape=[2, 3, 5], dtype="int32")
        z = ~x

332 333 334 335 336 337 338 339 340 341 342 343 344 345
        exe = fluid.Executor()
        out = exe.run(fluid.default_main_program(),
                      feed={"x": x_np},
                      fetch_list=[z])
        self.assertTrue(np.array_equal(out[0], out_np))

    @prog_scope()
    def test_T(self):
        x_np = np.random.randint(-100, 100, [2, 8, 5, 3]).astype("int32")
        out_np = x_np.T

        x = paddle.static.data(name="x", shape=[2, 8, 5, 3], dtype="int32")
        z = x.T

346 347 348 349 350 351
        exe = fluid.Executor()
        out = exe.run(fluid.default_main_program(),
                      feed={"x": x_np},
                      fetch_list=[z])
        self.assertTrue(np.array_equal(out[0], out_np))

352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373
    @prog_scope()
    def test_ndim(self):
        a = paddle.static.data(name="a", shape=[10, 1])
        self.assertEqual(a.dim(), 2)
        self.assertEqual(a.ndimension(), 2)
        self.assertEqual(a.ndim, 2)

    @prog_scope()
    def test_matmul(self):
        a = paddle.static.data(name='a', shape=[2, 3], dtype='float32')
        b = paddle.static.data(name='b', shape=[3, 5], dtype='float32')
        c = a @b  # __matmul__
        a_np = numpy.random.uniform(-1, 1, size=[2, 3]).astype('float32')
        b_np = numpy.random.uniform(-1, 1, size=[3, 5]).astype('float32')
        place = paddle.CPUPlace()
        exe = paddle.static.Executor(place)
        c_np = exe.run(paddle.static.default_main_program(),
                       feed={"a": a_np,
                             "b": b_np},
                       fetch_list=[c])
        self.assertTrue(numpy.allclose(a_np @b_np, c_np))

Y
Yang Yu 已提交
374 375 376

if __name__ == '__main__':
    unittest.main()