test_dist_fleet_ps6.py 6.0 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

T
tangwei12 已提交
17
import os
T
tangwei12 已提交
18 19
import unittest

T
tangwei12 已提交
20
import paddle
T
tangwei12 已提交
21 22
paddle.enable_static()

T
tangwei12 已提交
23 24 25 26
import paddle.fluid as fluid
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet

T
tangwei12 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
# For Net
base_lr = 0.2
emb_lr = base_lr * 3
dict_dim = 1500
emb_dim = 128
hid_dim = 128
margin = 0.1
sample_rate = 1
batch_size = 4


class TestPSPassWithBow(unittest.TestCase):
    def net(self):
        def get_acc(cos_q_nt, cos_q_pt, batch_size):
            cond = fluid.layers.less_than(cos_q_nt, cos_q_pt)
            cond = fluid.layers.cast(cond, dtype='float64')
            cond_3 = fluid.layers.reduce_sum(cond)
            acc = fluid.layers.elementwise_div(
                cond_3,
                fluid.layers.fill_constant(
                    shape=[1], value=batch_size * 1.0, dtype='float64'),
                name="simnet_acc")
            return acc

        def get_loss(cos_q_pt, cos_q_nt):
            loss_op1 = fluid.layers.elementwise_sub(
                fluid.layers.fill_constant_batch_size_like(
                    input=cos_q_pt,
                    shape=[-1, 1],
                    value=margin,
                    dtype='float32'),
                cos_q_pt)
            loss_op2 = fluid.layers.elementwise_add(loss_op1, cos_q_nt)
            loss_op3 = fluid.layers.elementwise_max(
                fluid.layers.fill_constant_batch_size_like(
                    input=loss_op2, shape=[-1, 1], value=0.0, dtype='float32'),
                loss_op2)
            avg_cost = fluid.layers.mean(loss_op3)
            return avg_cost

        is_distributed = False
        is_sparse = True

        # query
        q = fluid.layers.data(
            name="query_ids", shape=[1], dtype="int64", lod_level=1)
        # embedding
        q_emb = fluid.contrib.layers.sparse_embedding(
            input=q,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
                learning_rate=emb_lr))
        q_emb = fluid.layers.reshape(q_emb, [-1, emb_dim])
        # vsum
        q_sum = fluid.layers.sequence_pool(input=q_emb, pool_type='sum')
        q_ss = fluid.layers.softsign(q_sum)
        # fc layer after conv
        q_fc = fluid.layers.fc(
            input=q_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__q_fc__",
                learning_rate=base_lr))
        # label data
        label = fluid.layers.data(name="label", shape=[1], dtype="int64")
        # pt
        pt = fluid.layers.data(
            name="pos_title_ids", shape=[1], dtype="int64", lod_level=1)
        # embedding
        pt_emb = fluid.contrib.layers.sparse_embedding(
            input=pt,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
                learning_rate=emb_lr))
        pt_emb = fluid.layers.reshape(pt_emb, [-1, emb_dim])
        # vsum
        pt_sum = fluid.layers.sequence_pool(input=pt_emb, pool_type='sum')
        pt_ss = fluid.layers.softsign(pt_sum)
        # fc layer
        pt_fc = fluid.layers.fc(
            input=pt_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
                learning_rate=base_lr),
            bias_attr=fluid.ParamAttr(name="__fc_b__"))
        # nt
        nt = fluid.layers.data(
            name="neg_title_ids", shape=[1], dtype="int64", lod_level=1)
        # embedding
        nt_emb = fluid.contrib.layers.sparse_embedding(
            input=nt,
            size=[dict_dim, emb_dim],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__emb__",
                learning_rate=emb_lr))
        nt_emb = fluid.layers.reshape(nt_emb, [-1, emb_dim])
        # vsum
        nt_sum = fluid.layers.sequence_pool(input=nt_emb, pool_type='sum')
        nt_ss = fluid.layers.softsign(nt_sum)
        # fc layer
        nt_fc = fluid.layers.fc(
            input=nt_ss,
            size=hid_dim,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Constant(value=0.01),
                name="__fc__",
                learning_rate=base_lr),
            bias_attr=fluid.ParamAttr(name="__fc_b__"))
        cos_q_pt = fluid.layers.cos_sim(q_fc, pt_fc)
        cos_q_nt = fluid.layers.cos_sim(q_fc, nt_fc)
        # loss
        avg_cost = get_loss(cos_q_pt, cos_q_nt)
        # acc
        acc = get_acc(cos_q_nt, cos_q_pt, batch_size)
        return [avg_cost, acc, cos_q_pt]

    def test(self):
        endpoints = [
            "127.0.0.1:36004", "127.0.0.1:36005", "127.0.0.1:36006",
            "127.0.0.1:36007"
        ]

        role = role_maker.UserDefinedRoleMaker(
            current_id=0,
            role=role_maker.Role.SERVER,
            worker_num=2,
            server_endpoints=endpoints)

        fleet.init(role)
        loss, acc, _ = self.net()
T
tangwei12 已提交
165 166 167 168
        optimizer = fluid.optimizer.Adam(base_lr)

        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
T
tangwei12 已提交
169 170 171 172 173 174
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(loss)


if __name__ == '__main__':
    unittest.main()