device_worker.py 26.2 KB
Newer Older
1
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
"""Defination of device workers."""
15

C
Chengmo 已提交
16 17
from __future__ import print_function

18
__all__ = [
19 20
    'DeviceWorker', 'Hogwild', 'DownpourSGD', 'Section', 'DownpourSGDOPT',
    'HeterSection'
21
]
22

23 24

class DeviceWorker(object):
X
xjqbest 已提交
25
    """
26
    DeviceWorker is an abstract class, which generates worker desc.
27 28
    This class is an inner class that we do computation logics within
    the implementation. For example, execution of a program or a graph.
X
xjqbest 已提交
29
    """
30

31
    def __init__(self):
32
        """Init."""
D
dongdaxiang 已提交
33 34
        self._program = None
        self._infer = None
35

36 37 38
    def _set_infer(self, infer=False):
        """
        set inference flag for current device worker
C
Chengmo 已提交
39

40 41 42
        Args:
            infer(bool): whether to do inference
        """
D
dongdaxiang 已提交
43
        self._infer = infer
D
dongdaxiang 已提交
44

45
    def _set_fleet_desc(self, fleet_desc):
X
xjqbest 已提交
46 47 48 49 50 51
        """
        Set fleet desc.

        Args:
            fleet_desc(PSParameter): pslib.PSParameter object
        """
D
dongdaxiang 已提交
52
        self._fleet_desc = fleet_desc
D
dongdaxiang 已提交
53

54
    def _set_program(self, program):
X
xjqbest 已提交
55 56 57 58 59 60
        """
        Set program.

        Args:
            program(Program): a Program object
        """
D
dongdaxiang 已提交
61
        self._program = program
62

63
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
64 65 66 67 68 69 70 71 72
        """
        Generator worker desc.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        raise NotImplementedError(
            "DeviceWorker does not implement gen_worker_desc, "
            "please use Hogwild or DownpourSGD, etc.")
73 74 75


class Hogwild(DeviceWorker):
X
xjqbest 已提交
76 77 78 79
    """
    Hogwild is a kind of SGD algorithm.

    """
80

81
    def __init__(self):
82
        """Init."""
83 84
        super(Hogwild, self).__init__()

85
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
86 87 88 89 90 91
        """
        Generator worker desc, which device worker is HogwildWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
92
        trainer_desc.device_worker_name = "HogwildWorker"
D
dongdaxiang 已提交
93
        if self._infer:
94
            # just ignore feed op for inference model
W
wangguanqun 已提交
95 96 97 98
            trainer_desc.hogwild_param.skip_ops.extend([
                "feed", "push_sparse", "push_sparse_v2", "push_dense",
                "distributed_push_sparse", "send"
            ])
99

100 101
        dense_table_set = set()
        program_id = str(id(self._program))
102
        print("device worker program id:", program_id)
103 104 105 106
        if self._program == None:
            print("program of current device worker is not configured")
            exit(-1)
        opt_info = self._program._fleet_opt
107 108
        # when opt_info is None or empty dict, it should return
        if not opt_info:
109
            return
T
Thunderbrook 已提交
110 111 112 113 114 115
        downpour = trainer_desc.downpour_param
        hogwild = trainer_desc.hogwild_param
        if opt_info["stat_var_names"]:
            for i in opt_info["stat_var_names"]:
                hogwild.stat_var_names.extend([i])
                downpour.stat_var_names.extend([i])
116

117 118
        from paddle.fluid.incubate.fleet.parameter_server import version

119 120
        if version.is_transpiler(
        ) and "fleet_desc" not in opt_info and "program_configs" not in opt_info:
C
Chengmo 已提交
121 122
            return

123
        program_configs = opt_info["program_configs"]
124
        print("device worker program_configs:", program_configs)
125 126

        for pid in program_configs:
127
            print("device worker", pid, program_id)
128 129 130
            if pid == program_id:
                pc = downpour.program_config.add()
                pc.program_id = program_id
131 132
                print("device worker pull dense:",
                      program_configs[program_id]["pull_dense"])
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
                for i in program_configs[program_id]["push_sparse"]:
                    pc.push_sparse_table_id.extend([i])
                for i in program_configs[program_id]["push_dense"]:
                    pc.push_dense_table_id.extend([i])
                    dense_table_set.add(i)
                for i in program_configs[program_id]["pull_sparse"]:
                    pc.pull_sparse_table_id.extend([i])
                for i in program_configs[program_id]["pull_dense"]:
                    pc.pull_dense_table_id.extend([i])
                    dense_table_set.add(i)
                break

        trainer_desc.device_worker_name = "HogwildWorker"
        pull_thread = trainer_desc.pull_dense_param
        pull_thread.device_num = trainer_desc.thread_num
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
        if opt_info.get("program_id_to_worker") is None and opt_info.get(
                "dense_table_config") is None:
            raise ValueError(
                "opt_info must have program_id_to_worker or dense_table_config")
        if opt_info.get("program_id_to_worker") is not None:
            prog_id_to_worker = opt_info["program_id_to_worker"]
            if prog_id_to_worker.get(program_id) is None:
                raise ValueError("%s not found in program_id_to_worker" %
                                 program_id)
            worker = opt_info["program_id_to_worker"][program_id]
            for i in worker.get_desc().dense_table:
                if i.table_id in dense_table_set:
                    dense_table = pull_thread.dense_table.add()
                    dense_table.dense_value_name.extend(i.dense_variable_name)
                    dense_table.table_id = \
                        i.table_id
            sparse_len = len(worker.get_desc().sparse_table)
            for i in range(sparse_len):
                sparse_table = downpour.sparse_table.add()
                sparse_table.table_id = worker.get_desc().sparse_table[
                    i].table_id
                sparse_table.sparse_key_name.extend(worker.get_desc()
                                                    .sparse_table[i].slot_key)
                sparse_table.sparse_value_name.extend(worker.get_desc(
                ).sparse_table[i].slot_value)
                sparse_table.sparse_grad_name.extend(worker.get_desc(
                ).sparse_table[i].slot_gradient)
                sparse_table.fea_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
                        i].accessor.fea_dim
                # not use emb_dim
                sparse_table.emb_dim = -1
                # not use hard code click
                sparse_table.label_var_name = ""

            for i in worker.get_desc().dense_table:
                if i.table_id in dense_table_set:
                    dense_table = downpour.dense_table.add()
                    dense_table.table_id = i.table_id
                    dense_table.dense_value_name.extend(i.dense_variable_name)
                    dense_table.dense_grad_name.extend(
                        i.dense_gradient_variable_name)
            hogwild.skip_ops.extend(worker.get_desc().skip_op)
        else:
            dense_table_config = opt_info.get("dense_table_config")
            print("device worker dense_table_config:", dense_table_config)
            for table_id, varnames in dense_table_config.items():
195
                dense_table = pull_thread.dense_table.add()
196 197 198
                dense_table.dense_value_name.extend(varnames)
                dense_table.table_id = table_id

199
        if self._infer:
200 201
            hogwild.skip_ops.extend(
                ["push_sparse", "push_sparse_v2", "push_dense"])
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328


class DownpourLite(DeviceWorker):
    """
    DownpourLite is a kind of SGD algorithm.

    """

    def __init__(self):
        """Init."""
        super(DownpourLite, self).__init__()

    def _gen_worker_desc(self, trainer_desc):
        """
        Generator worker desc, which device worker is DownpourLiteWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        print("create DownpourLiteWorker")
        trainer_desc.device_worker_name = "DownpourLiteWorker"
        if self._infer:
            # just ignore feed op for inference model
            trainer_desc.downpour_param.skip_ops.extend([
                "feed", "push_sparse", "push_sparse_v2", "push_dense",
                "distributed_push_sparse", "send"
            ])

        dense_table_set = set()
        program_id = str(id(self._program))
        print("device worker program id:", program_id)
        if self._program == None:
            print("program of current device worker is not configured")
            exit(-1)
        opt_info = self._program._fleet_opt
        # when opt_info is None or empty dict, it should return
        if not opt_info:
            return
        downpour = trainer_desc.downpour_param
        if opt_info["stat_var_names"]:
            for i in opt_info["stat_var_names"]:
                downpour.stat_var_names.extend([i])

        from paddle.fluid.incubate.fleet.parameter_server import version

        if version.is_transpiler(
        ) and "fleet_desc" not in opt_info and "program_configs" not in opt_info:
            return

        program_configs = opt_info["program_configs"]
        print("device worker program_configs:", program_configs)

        for pid in program_configs:
            print("device worker", pid, program_id)
            if pid == program_id:
                pc = downpour.program_config.add()
                pc.program_id = program_id
                print("device worker pull dense:",
                      program_configs[program_id]["pull_dense"])
                for i in program_configs[program_id]["push_sparse"]:
                    pc.push_sparse_table_id.extend([i])
                for i in program_configs[program_id]["push_dense"]:
                    pc.push_dense_table_id.extend([i])
                    dense_table_set.add(i)
                for i in program_configs[program_id]["pull_sparse"]:
                    pc.pull_sparse_table_id.extend([i])
                for i in program_configs[program_id]["pull_dense"]:
                    pc.pull_dense_table_id.extend([i])
                    dense_table_set.add(i)
                break

        pull_thread = trainer_desc.pull_dense_param
        pull_thread.device_num = trainer_desc.thread_num
        if opt_info.get("program_id_to_worker") is None and opt_info.get(
                "dense_table_config") is None:
            raise ValueError(
                "opt_info must have program_id_to_worker or dense_table_config")
        if opt_info.get("program_id_to_worker") is not None:
            prog_id_to_worker = opt_info["program_id_to_worker"]
            if prog_id_to_worker.get(program_id) is None:
                raise ValueError("%s not found in program_id_to_worker" %
                                 program_id)
            worker = opt_info["program_id_to_worker"][program_id]
            for i in worker.get_desc().dense_table:
                if i.table_id in dense_table_set:
                    dense_table = pull_thread.dense_table.add()
                    dense_table.dense_value_name.extend(i.dense_variable_name)
                    dense_table.table_id = \
                        i.table_id
            sparse_len = len(worker.get_desc().sparse_table)
            for i in range(sparse_len):
                sparse_table = downpour.sparse_table.add()
                sparse_table.table_id = worker.get_desc().sparse_table[
                    i].table_id
                sparse_table.sparse_key_name.extend(worker.get_desc()
                                                    .sparse_table[i].slot_key)
                sparse_table.sparse_value_name.extend(worker.get_desc(
                ).sparse_table[i].slot_value)
                sparse_table.sparse_grad_name.extend(worker.get_desc(
                ).sparse_table[i].slot_gradient)
                sparse_table.fea_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
                        i].accessor.fea_dim
                # not use emb_dim
                sparse_table.emb_dim = -1
                # not use hard code click
                sparse_table.label_var_name = ""

            for i in worker.get_desc().dense_table:
                if i.table_id in dense_table_set:
                    dense_table = downpour.dense_table.add()
                    dense_table.table_id = i.table_id
                    dense_table.dense_value_name.extend(i.dense_variable_name)
                    dense_table.dense_grad_name.extend(
                        i.dense_gradient_variable_name)
            downpour.skip_ops.extend(worker.get_desc().skip_op)
        else:
            dense_table_config = opt_info.get("dense_table_config")
            print("device worker dense_table_config:", dense_table_config)
            for table_id, varnames in dense_table_config.items():
                dense_table = pull_thread.dense_table.add()
                dense_table.dense_value_name.extend(varnames)
                dense_table.table_id = table_id

        if self._infer:
            downpour.skip_ops.extend(
                ["push_sparse", "push_sparse_v2", "push_dense"])
329

330

D
dongdaxiang 已提交
331
class DownpourSGD(DeviceWorker):
X
xjqbest 已提交
332 333 334
    """
    DownpourSGD is a kind of distributed SGD algorithm.
    """
335

336
    def __init__(self):
X
xjqbest 已提交
337 338
        """
        Init.
339
        initialize downpourSGD device worker
X
xjqbest 已提交
340
        """
D
dongdaxiang 已提交
341
        super(DownpourSGD, self).__init__()
342

343
    def _gen_worker_desc(self, trainer_desc):
X
xjqbest 已提交
344 345 346 347 348 349
        """
        Generator worker desc, which device worker is DownpourWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
X
fix bug  
xjqbest 已提交
350
        dense_table_set = set()
D
dongdaxiang 已提交
351 352
        program_id = str(id(self._program))
        if self._program == None:
D
dongdaxiang 已提交
353
            print("program of current device worker is not configured")
354
            exit(-1)
D
dongdaxiang 已提交
355
        opt_info = self._program._fleet_opt
D
dongdaxiang 已提交
356
        program_configs = opt_info["program_configs"]
357
        downpour = trainer_desc.downpour_param
D
dongdaxiang 已提交
358

D
dongdaxiang 已提交
359 360
        for pid in program_configs:
            if pid == program_id:
D
dongdaxiang 已提交
361 362 363 364 365 366
                pc = downpour.program_config.add()
                pc.program_id = program_id
                for i in program_configs[program_id]["push_sparse"]:
                    pc.push_sparse_table_id.extend([i])
                for i in program_configs[program_id]["push_dense"]:
                    pc.push_dense_table_id.extend([i])
X
xjqbest 已提交
367
                    dense_table_set.add(i)
D
dongdaxiang 已提交
368 369 370 371
                for i in program_configs[program_id]["pull_sparse"]:
                    pc.pull_sparse_table_id.extend([i])
                for i in program_configs[program_id]["pull_dense"]:
                    pc.pull_dense_table_id.extend([i])
X
fix bug  
xjqbest 已提交
372
                    dense_table_set.add(i)
Z
zhang wenhui 已提交
373 374 375 376 377 378 379
                # code for partial push dense table such as multitask
                if "cond2denseid" in program_configs[program_id]:
                    cond2denseid = program_configs[program_id]["cond2denseid"]
                    for key, value in cond2denseid.items():
                        mc_map = pc.partial_pushdense_condtable_map.add()
                        mc_map.key = key
                        mc_map.value = value
D
dongdaxiang 已提交
380
                break
381

T
Thunderbrook 已提交
382 383
        trainer_desc.device_worker_name = opt_info.get("worker_class",
                                                       "DownpourWorker")
384 385
        pull_thread = trainer_desc.pull_dense_param
        pull_thread.device_num = trainer_desc.thread_num
386 387 388 389 390 391 392 393
        if opt_info.get("program_id_to_worker") is None:
            raise ValueError("opt_info must have program_id_to_worker")
        prog_id_to_worker = opt_info["program_id_to_worker"]
        if prog_id_to_worker.get(program_id) is None:
            raise ValueError("%s not found in program_id_to_worker" %
                             program_id)
        worker = opt_info["program_id_to_worker"][program_id]
        for i in worker.get_desc().dense_table:
394 395
            if i.table_id in dense_table_set:
                dense_table = pull_thread.dense_table.add()
396
                dense_table.dense_value_name.extend(i.dense_variable_name)
397 398
                dense_table.table_id = \
                    i.table_id
399
        sparse_len = len(worker.get_desc().sparse_table)
400 401
        for i in range(sparse_len):
            sparse_table = downpour.sparse_table.add()
402 403 404 405 406 407 408
            sparse_table.table_id = worker.get_desc().sparse_table[i].table_id
            sparse_table.sparse_key_name.extend(worker.get_desc().sparse_table[
                i].slot_key)
            sparse_table.sparse_value_name.extend(worker.get_desc()
                                                  .sparse_table[i].slot_value)
            sparse_table.sparse_grad_name.extend(worker.get_desc().sparse_table[
                i].slot_gradient)
409 410
            if opt_info["use_cvm"] or "no_cvm" in opt_info and opt_info[
                    "no_cvm"] == True:
411 412
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
C
Chengmo 已提交
413
                        i].accessor.fea_dim
414 415 416 417
                sparse_table.fea_dim = sparse_table.emb_dim
            else:
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
C
Chengmo 已提交
418
                        i].accessor.fea_dim - 2
419 420 421
                sparse_table.fea_dim = sparse_table.emb_dim + 2
            # TODO(guru4elephant): hard code here, need to improve
            sparse_table.label_var_name = "click"
422 423 424
        if opt_info["stat_var_names"]:
            for i in opt_info["stat_var_names"]:
                downpour.stat_var_names.extend([i])
425

426
        for i in worker.get_desc().dense_table:
X
fix bug  
xjqbest 已提交
427 428 429
            if i.table_id in dense_table_set:
                dense_table = downpour.dense_table.add()
                dense_table.table_id = i.table_id
430
                dense_table.dense_value_name.extend(i.dense_variable_name)
X
fix bug  
xjqbest 已提交
431 432
                dense_table.dense_grad_name.extend(
                    i.dense_gradient_variable_name)
X
xujiaqi01 已提交
433
        downpour.skip_ops.extend(worker.get_desc().skip_op)
D
dongdaxiang 已提交
434
        if self._infer:
435 436
            downpour.push_dense = False
            downpour.push_sparse = False
X
fix bug  
xjqbest 已提交
437

438

439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
class DownpourSGDOPT(DeviceWorker):
    """
    DownpourSGDOPT is a kind of distributed SGD algorithm.
    """

    def __init__(self):
        """
        Init.
        initialize downpourSGDOPT device worker
        """
        super(DownpourSGDOPT, self).__init__()

    def _gen_worker_desc(self, trainer_desc):
        """
        Generator worker desc, which device worker is DownpourWorker.

        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        dense_table_set = set()
        program_id = str(id(self._program))
        if self._program == None:
            print("program of current device worker is not configured")
            exit(-1)
        opt_info = self._program._fleet_opt
        program_configs = opt_info["program_configs"]
        downpour = trainer_desc.downpour_param

        for pid in program_configs:
            if pid == program_id:
                pc = downpour.program_config.add()
                pc.program_id = program_id
                for i in program_configs[program_id]["push_sparse"]:
                    pc.push_sparse_table_id.extend([i])
                for i in program_configs[program_id]["push_dense"]:
                    pc.push_dense_table_id.extend([i])
                    dense_table_set.add(i)
                for i in program_configs[program_id]["pull_sparse"]:
                    pc.pull_sparse_table_id.extend([i])
                for i in program_configs[program_id]["pull_dense"]:
                    pc.pull_dense_table_id.extend([i])
                    dense_table_set.add(i)
                break

        trainer_desc.device_worker_name = "DownpourWorkerOpt"
        pull_thread = trainer_desc.pull_dense_param
        pull_thread.device_num = trainer_desc.thread_num
        if opt_info.get("program_id_to_worker") is None:
            raise ValueError("opt_info must have program_id_to_worker")
        prog_id_to_worker = opt_info["program_id_to_worker"]
        if prog_id_to_worker.get(program_id) is None:
            raise ValueError("%s not found in program_id_to_worker" %
                             program_id)
        worker = opt_info["program_id_to_worker"][program_id]
        for i in worker.get_desc().dense_table:
            if i.table_id in dense_table_set:
                dense_table = pull_thread.dense_table.add()
                dense_table.dense_value_name.extend(i.dense_variable_name)
                dense_table.table_id = \
                    i.table_id
        sparse_len = len(worker.get_desc().sparse_table)
        for i in range(sparse_len):
            sparse_table = downpour.sparse_table.add()
            sparse_table.table_id = worker.get_desc().sparse_table[i].table_id
            sparse_table.sparse_key_name.extend(worker.get_desc().sparse_table[
                i].slot_key)
            sparse_table.sparse_value_name.extend(worker.get_desc()
                                                  .sparse_table[i].slot_value)
            sparse_table.sparse_grad_name.extend(worker.get_desc().sparse_table[
                i].slot_gradient)
            if opt_info["use_cvm"] or "no_cvm" in opt_info and opt_info[
                    "no_cvm"] == True:
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
C
Chengmo 已提交
513
                        i].accessor.fea_dim
514 515 516 517
                sparse_table.fea_dim = sparse_table.emb_dim
            else:
                sparse_table.emb_dim = \
                    self._fleet_desc.server_param.downpour_server_param.downpour_table_param[
C
Chengmo 已提交
518
                        i].accessor.fea_dim - 2
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
                sparse_table.fea_dim = sparse_table.emb_dim + 2
            # TODO(guru4elephant): hard code here, need to improve
            sparse_table.label_var_name = "click"
        if "local_tables" in opt_info and sparse_table.table_id in opt_info[
                "local_tables"]:
            sparse_table.is_local = True
        if "async_tables" in opt_info and sparse_table.table_id in opt_info[
                "async_tables"]:
            sparse_table.is_async = True
        if opt_info["stat_var_names"]:
            for i in opt_info["stat_var_names"]:
                downpour.stat_var_names.extend([i])

        for i in worker.get_desc().dense_table:
            if i.table_id in dense_table_set:
                dense_table = downpour.dense_table.add()
                dense_table.table_id = i.table_id
                dense_table.dense_value_name.extend(i.dense_variable_name)
                dense_table.dense_grad_name.extend(
                    i.dense_gradient_variable_name)
        downpour.skip_ops.extend(worker.get_desc().skip_op)
        if self._infer:
            downpour.push_dense = False
            downpour.push_sparse = False


H
hutuxian 已提交
545
class Section(DeviceWorker):
546
    """SectionWorker."""
H
hutuxian 已提交
547 548

    def __init__(self):
549
        """Init."""
H
hutuxian 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562
        super(Section, self).__init__()

    def _gen_worker_desc(self, trainer_desc):
        """
        Generator worker desc, which device worker is SectionWorker.
        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        from google.protobuf import text_format
        from . import core
        trainer_desc.device_worker_name = "SectionWorker"
        pipeline_opt = self._program._pipeline_opt
        section_param = trainer_desc.section_param
L
lilong12 已提交
563
        section_param.num_microbatches = pipeline_opt["num_microbatches"]
H
hutuxian 已提交
564
        section_param.start_cpu_core_id = pipeline_opt["start_cpu_core_id"]
565 566 567 568 569 570 571 572 573 574 575 576
        section_param.pipeline_stage = pipeline_opt["pipeline_stage"]
        section_param.num_pipeline_stages = pipeline_opt["num_pipeline_stages"]
        schedule_mode_str = pipeline_opt["schedule_mode"]
        # F-then-B scheduler which runs Forward phase for all microbatches,
        # then runs Backward phase for all microbatches.
        # 1F1B scheduler, which runs forward phase and backward phase altertively
        # after startup phase.
        assert schedule_mode_str in ["F-then-B", "1F1B"], (
            "The schedule mode "
            "for pipeline must be one of F-then-B or 1F1B")
        schedule_mode = 0 if schedule_mode_str == "F-then-B" else 1
        section_param.schedule_mode = schedule_mode
577 578
        cfg = section_param.section_config
        program = pipeline_opt["section_program"]
579
        cfg.program_desc.ParseFromString(program._get_desc()
580 581 582 583 584
                                         .serialize_to_string())
        # TODO: why does not work
        # cfg.program_desc.CopyFrom(program.program._get_desc())
        place = pipeline_opt["place"]
        place_id = pipeline_opt["place_id"]
585 586 587 588
        if core.is_compiled_with_cuda():
            assert isinstance(place, core.CUDAPlace)
        elif core.is_compiled_with_npu():
            assert isinstance(place, core.NPUPlace)
589 590
        cfg.place = cfg.CUDAPlace
        cfg.place_id = place_id
H
hutuxian 已提交
591 592


593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
class HeterSection(DeviceWorker):
    """HeterSectionWorker."""

    def __init__(self):
        """Init."""
        super(HeterSection, self).__init__()

    def _gen_worker_desc(self, trainer_desc):
        """
        Generator worker desc, which device worker is HeterSectionWorker.
        Args:
            trainer_desc(TrainerDesc): a TrainerDesc object
        """
        from google.protobuf import text_format
        from . import core
        trainer_desc.device_worker_name = "HeterSectionWorker"
        heter_pipeline_opt = self._program._heter_pipeline_opt
        heter_section_param = trainer_desc.heter_section_param
        heter_section_param.num_microbatches = heter_pipeline_opt[
            "num_microbatches"]
        heter_section_param.pipeline_stage = heter_pipeline_opt[
            "pipeline_stage"]
        heter_section_param.num_pipeline_stages = heter_pipeline_opt[
            "num_pipeline_stages"]
        cfg = heter_section_param.section_config
        program = heter_pipeline_opt["section_program"]
        cfg.program_desc.ParseFromString(program._get_desc()
                                         .serialize_to_string())


623
class DeviceWorkerFactory(object):
624
    def _create_device_worker(self, worker_type):
625 626
        classname = worker_type.capitalize()
        return globals()[classname]()