tester_helper.h 27.6 KB
Newer Older
L
luotao1 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>
Y
Yan Chunwei 已提交
18

L
luotao1 已提交
19
#include <algorithm>
L
luotao1 已提交
20
#include <memory>
T
Tao Luo 已提交
21
#include <string>
L
luotao1 已提交
22
#include <thread>  // NOLINT
L
luotao1 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <vector>
Y
Yiqun Liu 已提交
25 26 27
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
L
luotao1 已提交
28
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
29
#include "paddle/fluid/framework/scope.h"
L
luotao1 已提交
30 31 32
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
33
#include "paddle/fluid/inference/api/helper.h"
Y
Yan Chunwei 已提交
34
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
35
#include "paddle/fluid/inference/tests/api/config_printer.h"
T
Tao Luo 已提交
36
#include "paddle/fluid/inference/tests/test_helper.h"
N
nhzlx 已提交
37
#include "paddle/fluid/inference/utils/benchmark.h"
L
luotao1 已提交
38 39
#include "paddle/fluid/platform/profiler.h"

N
nhzlx 已提交
40
DEFINE_string(model_name, "", "model name");
L
luotao1 已提交
41 42
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
T
Tao Luo 已提交
43
DEFINE_string(refer_result, "", "reference result for comparison");
44 45 46 47
DEFINE_int32(batch_size, 1, "batch size");
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
L
luotao1 已提交
48 49 50
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
T
Tao Luo 已提交
51 52
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
N
nhzlx 已提交
53 54
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
L
luotao1 已提交
55
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
56
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
L
luotao1 已提交
57
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
58 59 60
DEFINE_bool(warmup, false,
            "Use warmup to calculate elapsed_time more accurately. "
            "To reduce CI time, it sets false in default.");
L
luotao1 已提交
61

62
DECLARE_bool(profile);
L
luotao1 已提交
63
DECLARE_int32(paddle_num_threads);
64

L
luotao1 已提交
65 66 67
namespace paddle {
namespace inference {

68 69
using paddle::framework::proto::VarType;

70 71 72 73 74 75 76 77 78 79 80 81 82
template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

83
void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
84
  const auto *analysis_config =
85
      reinterpret_cast<const AnalysisConfig *>(config);
86
  if (use_analysis) {
87
    LOG(INFO) << *analysis_config;
88 89
    return;
  }
90
  LOG(INFO) << analysis_config->ToNativeConfig();
91
}
Y
Yan Chunwei 已提交
92

93
// Compare result between two PaddleTensor
L
luotao1 已提交
94
void CompareResult(const std::vector<PaddleTensor> &outputs,
T
tensor-tang 已提交
95
                   const std::vector<PaddleTensor> &ref_outputs) {
T
Tao Luo 已提交
96
  EXPECT_GT(outputs.size(), 0UL);
T
tensor-tang 已提交
97
  EXPECT_EQ(outputs.size(), ref_outputs.size());
L
luotao1 已提交
98 99
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
T
tensor-tang 已提交
100
    auto &ref_out = ref_outputs[i];
101 102
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
103
    EXPECT_GT(size, 0UL);
T
tensor-tang 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
Y
Yan Chunwei 已提交
119
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
T
tensor-tang 已提交
120 121 122
        }
        break;
      }
123 124 125 126 127 128 129 130
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = static_cast<int32_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
L
luotao1 已提交
131 132 133 134
    }
  }
}

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = ref_out.data<int64_t>(&place, &ref_size);
151
        EXPECT_EQ(size, static_cast<size_t>(ref_size));
152 153 154 155 156 157 158 159 160 161 162 163 164 165
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = ref_out.data<float>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
        }
        break;
      }
L
luotao1 已提交
166 167 168 169 170 171 172 173 174
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = ref_out.data<int32_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
175 176 177 178
    }
  }
}

179
std::unique_ptr<PaddlePredictor> CreateTestPredictor(
180
    const PaddlePredictor::Config *config, bool use_analysis = true) {
181
  const auto *analysis_config =
182
      reinterpret_cast<const AnalysisConfig *>(config);
T
Tao Luo 已提交
183
  if (use_analysis) {
184
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
T
Tao Luo 已提交
185
  }
186 187
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
T
Tao Luo 已提交
188 189
}

190
size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }
T
Tao Luo 已提交
191

192
std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
T
Tao Luo 已提交
193
                                                   int *num_ops) {
194
  std::unordered_map<std::string, int> res;
195
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
196 197 198 199 200 201
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
T
Tao Luo 已提交
202 203 204 205
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
206 207
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
T
Tao Luo 已提交
208 209 210 211
      ++num;
    }
  }
  *num_ops = num;
212
  return *fusion_status;
T
Tao Luo 已提交
213 214
}

T
Tao Luo 已提交
215
void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
216 217
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
T
tensor-tang 已提交
218
                       std::string params_filename = "params",
N
nhzlx 已提交
219 220
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
T
Tao Luo 已提交
221 222
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
223 224 225 226 227 228 229 230 231 232 233
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
T
tensor-tang 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
250
    size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
T
tensor-tang 已提交
251 252 253 254 255 256
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
N
nhzlx 已提交
257 258
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
T
tensor-tang 已提交
259
    }
T
Tao Luo 已提交
260 261 262 263
  }
  (*inputs).emplace_back(input_slots);
}

264 265 266 267 268 269 270 271 272 273 274 275
void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

L
luotao1 已提交
276 277 278 279 280 281 282 283 284 285 286
void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
L
luotao1 已提交
287 288
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
L
luotao1 已提交
289 290 291 292 293
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}
294

L
luotao1 已提交
295 296
void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
297
                      std::vector<std::vector<PaddleTensor>> *outputs,
298 299
                      int num_threads, int tid,
                      const VarType::Type data_type = VarType::FP32) {
L
luotao1 已提交
300 301 302 303 304
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
305
  outputs->resize(1);
L
luotao1 已提交
306 307 308
  Timer warmup_timer;
  warmup_timer.tic();
  if (!FLAGS_zero_copy) {
309
    predictor->Run(inputs[0], &(*outputs)[0], batch_size);
L
luotao1 已提交
310 311
  } else {
    predictor->ZeroCopyRun();
312
  }
313
  PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1, data_type);
L
luotao1 已提交
314 315 316 317
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
}
318

L
luotao1 已提交
319 320
void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
321
                   std::vector<std::vector<PaddleTensor>> *outputs,
322
                   int num_threads, int tid,
323 324
                   const VarType::Type data_type = VarType::FP32,
                   float *sample_latency = nullptr) {
L
luotao1 已提交
325
  int num_times = FLAGS_repeat;
326
  int iterations = inputs.size();  // process the whole dataset ...
327 328
  if (FLAGS_iterations > 0 &&
      FLAGS_iterations < static_cast<int64_t>(inputs.size()))
329 330 331 332 333
    iterations =
        FLAGS_iterations;  // ... unless the number of iterations is set
  outputs->resize(iterations);
  LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
            << ", run " << num_times << " times...";
L
luotao1 已提交
334 335
  Timer run_timer;
  double elapsed_time = 0;
Y
Yiqun Liu 已提交
336
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
337
  ProfilerStart("paddle_inference.prof");
Y
Yiqun Liu 已提交
338
#endif
339
  int predicted_num = 0;
L
luotao1 已提交
340
  if (!FLAGS_zero_copy) {
341
    for (int i = 0; i < iterations; i++) {
342
      run_timer.tic();
L
luotao1 已提交
343
      for (int j = 0; j < num_times; j++) {
344
        predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
345
      }
346 347 348 349 350 351
      elapsed_time += run_timer.toc();

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
352
    }
L
luotao1 已提交
353
  } else {
354
    for (int i = 0; i < iterations; i++) {
L
luotao1 已提交
355 356 357 358 359 360
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();
361 362 363 364 365

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
L
luotao1 已提交
366 367
    }
  }
368

Y
Yiqun Liu 已提交
369
#ifdef WITH_GPERFTOOLS
L
luotao1 已提交
370
  ProfilerStop();
Y
Yiqun Liu 已提交
371
#endif
N
nhzlx 已提交
372

373 374
  auto batch_latency = elapsed_time / (iterations * num_times);
  PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
375
            iterations, data_type);
376 377 378 379

  if (sample_latency != nullptr)
    *sample_latency = batch_latency / FLAGS_batch_size;

L
luotao1 已提交
380 381 382
  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
383 384
    benchmark.SetBatchSize(FLAGS_batch_size);
    benchmark.SetLatency(batch_latency);
L
luotao1 已提交
385
    benchmark.PersistToFile("benchmark_record.txt");
L
luotao1 已提交
386 387 388
  }
}

L
luotao1 已提交
389 390 391
void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
392
    std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true,
393 394
    const VarType::Type data_type = VarType::FP32,
    float *sample_latency = nullptr) {
L
luotao1 已提交
395
  auto predictor = CreateTestPredictor(config, use_analysis);
396
  if (FLAGS_warmup) {
397
    PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0, data_type);
398
  }
399 400
  PredictionRun(predictor.get(), inputs, outputs, 1, 0, data_type,
                sample_latency);
L
luotao1 已提交
401 402
}

L
luotao1 已提交
403
void TestMultiThreadPrediction(
404
    const PaddlePredictor::Config *config,
405
    const std::vector<std::vector<PaddleTensor>> &inputs,
406
    std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
T
Tao Luo 已提交
407
    bool use_analysis = true) {
L
luotao1 已提交
408
  std::vector<std::thread> threads;
L
luotao1 已提交
409 410 411 412 413
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }
414

L
luotao1 已提交
415 416 417 418
  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
419
      std::vector<std::vector<PaddleTensor>> outputs_tid;
L
luotao1 已提交
420
      auto &predictor = predictors[tid];
421 422 423 424
      if (FLAGS_warmup) {
        PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads,
                         tid);
      }
425
      PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
L
luotao1 已提交
426 427 428 429 430 431 432
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

433
void TestPrediction(const PaddlePredictor::Config *config,
434
                    const std::vector<std::vector<PaddleTensor>> &inputs,
435 436
                    std::vector<std::vector<PaddleTensor>> *outputs,
                    int num_threads, bool use_analysis = FLAGS_use_analysis) {
437
  PrintConfig(config, use_analysis);
L
luotao1 已提交
438
  if (num_threads == 1) {
T
Tao Luo 已提交
439
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
L
luotao1 已提交
440
  } else {
T
Tao Luo 已提交
441 442
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
L
luotao1 已提交
443 444 445
  }
}

446 447
void SummarizeAccuracy(float avg_acc_fp32, float avg_acc_int8,
                       int compared_idx) {
448 449 450 451 452 453
  PADDLE_ENFORCE_LE(compared_idx, 2,
                    "Compare either top1 accuracy or mAP (top5), the "
                    "compared_idx is out of range");
  PADDLE_ENFORCE_GE(compared_idx, 1,
                    "Compare either top1 accuracy or mAP (top5), the "
                    "compared_idx is out of range");
454
  std::string prefix = (compared_idx == 1) ? "top1_accuracy " : "mAP ";
455
  LOG(INFO) << "--- Accuracy summary --- ";
456 457 458 459 460 461 462 463
  LOG(INFO) << "Accepted " << prefix
            << "drop threshold: " << FLAGS_quantized_accuracy
            << ". (condition: (FP32_" << prefix << " - INT8_" << prefix
            << ") <= threshold)";
  LOG(INFO) << "FP32: avg " << prefix << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc_fp32;
  LOG(INFO) << "INT8: avg " << prefix << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc_int8;
464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479
}

void SummarizePerformance(float sample_latency_fp32,
                          float sample_latency_int8) {
  // sample latency in ms
  auto throughput_fp32 = 1000.0 / sample_latency_fp32;
  auto throughput_int8 = 1000.0 / sample_latency_int8;
  LOG(INFO) << "--- Performance summary --- ";
  LOG(INFO) << "FP32: avg fps: " << std::fixed << std::setw(6)
            << std::setprecision(4) << throughput_fp32
            << ", avg latency: " << sample_latency_fp32 << " ms";
  LOG(INFO) << "INT8: avg fps: " << std::fixed << std::setw(6)
            << std::setprecision(4) << throughput_int8
            << ", avg latency: " << sample_latency_int8 << " ms";
}

480
void CompareAccuracy(
481
    const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
482 483
    const std::vector<std::vector<PaddleTensor>> &output_slots_ref,
    int compared_idx) {
484
  if (output_slots_quant.size() == 0 || output_slots_ref.size() == 0)
485
    throw std::invalid_argument(
486
        "CompareAccuracy: output_slots vector is empty.");
487

488 489
  float total_accs_quant{0};
  float total_accs_ref{0};
490
  for (size_t i = 0; i < output_slots_quant.size(); ++i) {
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
    if (compared_idx == 1) {
      PADDLE_ENFORCE_GE(
          output_slots_quant[i].size(), 2UL,
          "To achieve top 1 accuracy, output_slots_quant[i].size()>=2");
      PADDLE_ENFORCE_GE(
          output_slots_ref[i].size(), 2UL,
          "To achieve top 1 accuracy, output_slots_ref[i].size()>=2");
    } else if (compared_idx == 2) {
      PADDLE_ENFORCE_GE(output_slots_quant[i].size(), 3UL,
                        "To achieve mAP, output_slots_quant[i].size()>=3");
      PADDLE_ENFORCE_GE(output_slots_ref[i].size(), 3UL,
                        "To achieve mAP, output_slots_ref[i].size()>=3");
    } else {
      throw std::invalid_argument(
          "CompareAccuracy: compared_idx is out of range.");
    }

508 509 510 511 512 513
    if (output_slots_quant[i][compared_idx].lod.size() > 0 ||
        output_slots_ref[i][compared_idx].lod.size() > 0)
      throw std::invalid_argument("CompareAccuracy: output has nonempty LoD.");
    if (output_slots_quant[i][compared_idx].dtype !=
            paddle::PaddleDType::FLOAT32 ||
        output_slots_ref[i][compared_idx].dtype != paddle::PaddleDType::FLOAT32)
514
      throw std::invalid_argument(
515 516 517 518 519
          "CompareAccuracy: output is of a wrong type.");
    total_accs_quant +=
        *static_cast<float *>(output_slots_quant[i][compared_idx].data.data());
    total_accs_ref +=
        *static_cast<float *>(output_slots_ref[i][compared_idx].data.data());
520
  }
521 522
  float avg_acc_quant = total_accs_quant / output_slots_quant.size();
  float avg_acc_ref = total_accs_ref / output_slots_ref.size();
523

524 525 526 527
  SummarizeAccuracy(avg_acc_ref, avg_acc_quant, compared_idx);
  CHECK_GT(avg_acc_ref, 0.0);
  CHECK_GT(avg_acc_quant, 0.0);
  CHECK_LE(avg_acc_ref - avg_acc_quant, FLAGS_quantized_accuracy);
528 529
}

L
luotao1 已提交
530 531 532 533 534 535 536 537 538
void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
539 540 541 542
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
L
luotao1 已提交
543 544 545 546 547 548
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

T
Tao Luo 已提交
549
void CompareNativeAndAnalysis(
550
    const PaddlePredictor::Config *config,
551
    const std::vector<std::vector<PaddleTensor>> &inputs) {
552
  PrintConfig(config, true);
553
  std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
554
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
T
Tao Luo 已提交
555
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
556 557
  PADDLE_ENFORCE_GT(native_outputs.size(), 0, "Native output is empty.");
  PADDLE_ENFORCE_GT(analysis_outputs.size(), 0, "Analysis output is empty.");
558
  CompareResult(analysis_outputs.back(), native_outputs.back());
T
Tao Luo 已提交
559 560
}

561
void CompareQuantizedAndAnalysis(
562
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
563 564
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const int compared_idx = 1) {
565 566 567 568 569 570 571 572 573
  PADDLE_ENFORCE_EQ(inputs[0][0].shape[0], FLAGS_batch_size,
                    "Input data has to be packed batch by batch.");
  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
574 575 576
  float sample_latency_fp32{-1};
  TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                          &sample_latency_fp32);
577 578 579 580 581

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> quantized_outputs;
582 583 584
  float sample_latency_int8{-1};
  TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true, VarType::INT8,
                          &sample_latency_int8);
585

586
  SummarizePerformance(sample_latency_fp32, sample_latency_int8);
587
  CompareAccuracy(quantized_outputs, analysis_outputs, compared_idx);
588 589
}

N
nhzlx 已提交
590 591 592 593 594 595 596 597 598 599
void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

600
void CompareAnalysisAndZeroCopy(
601
    PaddlePredictor::Config *config, PaddlePredictor::Config *config1,
602 603 604 605 606 607 608 609 610
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
611 612
  reinterpret_cast<AnalysisConfig *>(config1)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config1, true);
613 614 615 616 617 618
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
L
luotao1 已提交
619
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
620 621 622 623 624
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

625 626 627 628 629 630 631
void SaveOptimModel(AnalysisConfig *cfg, const std::string &dstPath) {
  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(cfg),
      FLAGS_use_analysis);
  (static_cast<AnalysisPredictor *>(predictor.get()))->SaveOptimModel(dstPath);
}

L
luotao1 已提交
632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702
template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
703
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
L
luotao1 已提交
704
                                  [](int a, int b) { return a * b; });
705
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
L
luotao1 已提交
706 707 708 709 710 711 712
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
713
    if (a.type() == VarType::FP32) {
L
luotao1 已提交
714 715 716 717 718 719 720 721
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
722
    } else if (a.type() == VarType::INT64) {
L
luotao1 已提交
723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

L
luotao1 已提交
754 755
}  // namespace inference
}  // namespace paddle