kthvalue_kernel.cu 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/phi/kernels/kthvalue_kernel.h"

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
#include "paddle/fluid/operators/top_k_function_cuda.h"
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/math_function.h"

namespace phi {
inline int getBlockSize(int col) {
  if (col > 512)
    return 1024;
  else if (col > 256 && col <= 512)
    return 512;
  else if (col > 128 && col <= 256)
    return 256;
  else if (col > 64 && col <= 128)
    return 128;
  else
    return 64;
}

template <typename T>
bool SortKthvalue(const phi::GPUContext& dev_ctx,
                  const DenseTensor* input_tensor,
                  const int64_t num_cols,
                  const int64_t num_rows,
                  const int k,
                  DenseTensor* out_tensor,
                  DenseTensor* indices_tensor) {
  auto cu_stream = dev_ctx.stream();
  DenseTensor input_indices;
  const std::vector<int64_t> dims = {num_rows, num_cols};
  auto dim = phi::make_ddim(dims);
  input_indices.Resize(dim);
  dev_ctx.template Alloc<int64_t>(&input_indices);
  size_t temp_storage_bytes = -1;
  int block_size = getBlockSize(num_cols);
  unsigned int maxGridDimX = dev_ctx.GetCUDAMaxGridDimSize()[0];
  unsigned int grid_size = num_rows < maxGridDimX
                               ? static_cast<unsigned int>(num_rows)
                               : maxGridDimX;
58 59 60
  paddle::operators::InitIndex<int64_t>
      <<<grid_size, block_size, 0, cu_stream>>>(
          input_indices.data<int64_t>(), num_rows, num_cols);
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
  cub::CountingInputIterator<int64_t> counting_iter(0);
  cub::TransformInputIterator<int64_t,
                              paddle::operators::SegmentOffsetIter,
                              cub::CountingInputIterator<int64_t>>
      segment_offsets_t(counting_iter,
                        paddle::operators::SegmentOffsetIter(num_cols));
  T* sorted_values_ptr;
  int64_t* sorted_indices_ptr;
  DenseTensor temp_values, temp_indices;
  const T* input = input_tensor->data<T>();
  T* values = out_tensor->data<T>();
  int64_t* indices = indices_tensor->mutable_data<int64_t>(dev_ctx.GetPlace());
  temp_values.Resize(dim);
  temp_indices.Resize(dim);
  sorted_values_ptr = dev_ctx.template Alloc<T>(&temp_values);
  sorted_indices_ptr = dev_ctx.template Alloc<int64_t>(&temp_indices);
  auto err =
      cub::DeviceSegmentedRadixSort::SortPairs(nullptr,
                                               temp_storage_bytes,
                                               input,
                                               sorted_values_ptr,
                                               input_indices.data<int64_t>(),
                                               sorted_indices_ptr,
                                               num_cols * num_rows,
                                               num_rows,
                                               segment_offsets_t,
                                               segment_offsets_t + 1,
                                               0,
                                               sizeof(T) * 8,
                                               cu_stream);
#ifdef __HIPCC__
  if (err != hipSuccess) {
    LOG(ERROR) << "KthvalueOP failed as could not launch "
                  "hipcub::DeviceSegmentedRadixSort::SortPairs, status: "
               << hipGetErrorString(err);
    return false;
  }
#else
  if (err != cudaSuccess) {
    LOG(ERROR) << "KthvalueOP failed as could not launch "
                  "cub::DeviceSegmentedRadixSort::SortPairs, status: "
               << cudaGetErrorString(err);
    return false;
  }
#endif
  DenseTensor temp_storage;
  temp_storage.Resize({static_cast<int>(temp_storage_bytes / sizeof(uint8_t))});
  uint8_t* temp_storage_data = dev_ctx.template Alloc<uint8_t>(&temp_storage);

  err = cub::DeviceSegmentedRadixSort::SortPairs(temp_storage_data,
                                                 temp_storage_bytes,
                                                 input,
                                                 sorted_values_ptr,
                                                 input_indices.data<int64_t>(),
                                                 sorted_indices_ptr,
                                                 num_cols * num_rows,
                                                 num_rows,
                                                 segment_offsets_t,
                                                 segment_offsets_t + 1,
                                                 0,
                                                 sizeof(T) * 8,
                                                 cu_stream);
#ifdef __HIPCC__
  if (err != hipSuccess) {
    LOG(ERROR) << "KthvalueOP failed as could not launch "
                  "hipcub::DeviceSegmentedRadixSort::SortPairs, "
               << temp_storage_bytes << ", status: " << hipGetErrorString(err);
    return false;
  }
#else
  if (err != cudaSuccess) {
    LOG(ERROR) << "KthvalueOP failed as could not launch "
                  "cub::DeviceSegmentedRadixSort::SortPairs, "
               << temp_storage_bytes << ", status: " << cudaGetErrorString(err);
    return false;
  }
#endif
  auto& dev = *dev_ctx.eigen_device();
  const Eigen::DSizes<Eigen::DenseIndex, 2> slice_indices{0, k - 1};
  const Eigen::DSizes<Eigen::DenseIndex, 2> slice_sizes{num_rows, 1};
  auto e_indices = EigenMatrix<int64_t>::From(*indices_tensor, dim);
  auto e_tmp_indices =
      EigenMatrix<int64_t>::From(static_cast<const DenseTensor>(temp_indices));
  std::vector<int> odims = {static_cast<int>(num_rows), static_cast<int>(1)};
  dim = phi::make_ddim(odims);
  auto e_values = EigenMatrix<T>::From(*out_tensor, dim);
  auto e_tmp_values =
      EigenMatrix<T>::From(static_cast<const DenseTensor>(temp_values));

  funcs::EigenSlice<std::decay_t<decltype(dev)>, int64_t, 2>::Eval(
      dev, e_indices, e_tmp_indices, slice_indices, slice_sizes);
  funcs::EigenSlice<std::decay_t<decltype(dev)>, T, 2>::Eval(
      dev, e_values, e_tmp_values, slice_indices, slice_sizes);
  return true;
}

template <typename T, typename Context>
void KthvalueKernel(const Context& dev_ctx,
                    const DenseTensor& x,
                    int k,
                    int axis,
                    bool keepdim,
                    DenseTensor* output,
                    DenseTensor* indices) {
  const auto& in_dims = x.dims();
  if (axis < 0) axis += in_dims.size();
  auto out_dims = output->dims();
  const T* input_data = x.data<T>();
  T* output_data = dev_ctx.template Alloc<T>(output);
  int64_t* indices_data = dev_ctx.template Alloc<int64_t>(indices);

  if (axis == in_dims.size() - 1) {
    const int64_t& input_height =
        phi::product(phi::slice_ddim(in_dims, 0, in_dims.size() - 1));
    const int64_t& input_width = in_dims[in_dims.size() - 1];
    PADDLE_ENFORCE_EQ(
        SortKthvalue<T>(
            dev_ctx, &x, input_width, input_height, k, output, indices),
        true,
        phi::errors::External("KthvalueOP: Error when use cub sorting"));
    return;
  } else {
    std::vector<int> trans;
    for (int i = 0; i < axis; i++) {
      trans.emplace_back(i);
    }
    trans.emplace_back(in_dims.size() - 1);
    for (int i = axis + 1; i < in_dims.size() - 1; i++) {
      trans.emplace_back(i);
    }
    trans.emplace_back(axis);
    if (!keepdim) {
      std::vector<int> tmp_out_shape;
      for (int i = 0; i < axis; i++) {
        tmp_out_shape.emplace_back(in_dims[i]);
      }
      tmp_out_shape.emplace_back(1);
      for (int i = axis + 1; i < in_dims.size(); i++) {
        tmp_out_shape.emplace_back(in_dims[i]);
      }
      DDim tmp_out_dims = phi::make_ddim(tmp_out_shape);
      output->Resize(tmp_out_dims);
      indices->Resize(tmp_out_dims);
    }
    DDim trans_dims(in_dims);
    DDim trans_out_dims(in_dims);
    for (int i = 0; i < trans.size(); i++) {
      trans_dims[i] = in_dims[trans[i]];
      trans_out_dims[i] = in_dims[trans[i]];
    }
    trans_out_dims[in_dims.size() - 1] = 1;
    DenseTensor trans_input;
    trans_input.mutable_data<T>(trans_dims, dev_ctx.GetPlace());
    int ndims = trans.size();
    funcs::TransCompute<phi::GPUContext, T>(
        ndims, dev_ctx, x, &trans_input, trans);
    DenseTensor trans_ind, trans_out;
    trans_ind.mutable_data<int64_t>(trans_out_dims, dev_ctx.GetPlace());
    trans_out.mutable_data<T>(trans_out_dims, dev_ctx.GetPlace());
    const int64_t input_height =
        phi::product(phi::slice_ddim(trans_dims, 0, trans_dims.size() - 1));
    const int64_t input_width = trans_dims[trans_dims.size() - 1];
    PADDLE_ENFORCE_EQ(
        SortKthvalue<T>(dev_ctx,
                        &trans_input,
                        input_width,
                        input_height,
                        k,
                        &trans_out,
                        &trans_ind),
        true,
        phi::errors::External("KthvalueOP: Error when use cub sorting"));
    funcs::TransCompute<phi::GPUContext, int64_t>(
        ndims, dev_ctx, trans_ind, indices, trans);
    funcs::TransCompute<phi::GPUContext, T>(
        ndims, dev_ctx, trans_out, output, trans);
    if (!keepdim) {
      output->Resize(out_dims);
      indices->Resize(out_dims);
    }
  }
}
}  // namespace phi

PD_REGISTER_KERNEL(kthvalue,
                   GPU,
                   ALL_LAYOUT,
                   phi::KthvalueKernel,
                   float,
                   double,
                   int,
                   int64_t) {}