matmul_grad_kernel.cc 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/matmul_grad_kernel.h"
W
Weilong Wu 已提交
16
#include "paddle/fluid/framework/tensor_util.h"
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
#include "paddle/phi/backends/xpu/enforce_xpu.h"
#include "paddle/phi/backends/xpu/xpu_context.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/xpu/xpu_api_wrapper.h"
namespace phi {

template <typename T, typename Context>
void MatmulGradKernel(const Context& dev_ctx,
                      const DenseTensor& x,
                      const DenseTensor& y,
                      const DenseTensor& dout,
                      bool transpose_x,
                      bool transpose_y,
                      DenseTensor* dx,
                      DenseTensor* dy) {
  using XPUType = typename XPUTypeTrait<T>::Type;

  if (dx) {
    dev_ctx.template Alloc<T>(dx);
  }
  if (dy) {
    dev_ctx.template Alloc<T>(dy);
  }

  const XPUType* dout_ptr = reinterpret_cast<const XPUType*>(dout.data<T>());
  const XPUType* x_ptr = reinterpret_cast<const XPUType*>(x.data<T>());
  const XPUType* y_ptr = reinterpret_cast<const XPUType*>(y.data<T>());

  xpu::Context* xpu_ctx = dev_ctx.x_context();

  XpuFcInfo info_forward;
  GetFCInfo(x.dims(), y.dims(), transpose_x, transpose_y, &info_forward);
  xpu::ctx_guard RAII_GUARD(xpu_ctx);
  // begin calculate
  const XPUType* a_1 = reinterpret_cast<const XPUType*>(NULL);
  const XPUType* b_1 = reinterpret_cast<const XPUType*>(NULL);
  const XPUType* a_2 = reinterpret_cast<const XPUType*>(NULL);
  const XPUType* b_2 = reinterpret_cast<const XPUType*>(NULL);
  XPUType* c_1 = (dx == NULL) ? reinterpret_cast<XPUType*>(NULL)
                              : reinterpret_cast<XPUType*>(dx->data<T>());
  XPUType* c_2 = (dy == NULL) ? reinterpret_cast<XPUType*>(NULL)
                              : reinterpret_cast<XPUType*>(dy->data<T>());
  XpuFcInfo info_dx;
  XpuFcInfo info_dy;
  std::tuple<XpuFcInfo,
             XpuFcInfo,
             const XPUType*,
             const XPUType*,
             const XPUType*,
             const XPUType*>
      fc_info = MatmulGradFcInfo(xpu_ctx,
                                 &RAII_GUARD,
                                 info_forward,
                                 transpose_x,
                                 transpose_y,
                                 x_ptr,
                                 y_ptr,
                                 dout_ptr);
  std::tie(info_dx, info_dy, a_1, b_1, a_2, b_2) = fc_info;
  if (dx) {
    MatMulXPUFunction<XPUType>(xpu_ctx, a_1, b_1, c_1, info_dx, 1.0f);
  }
  if (dy) {
    MatMulXPUFunction<XPUType>(xpu_ctx, a_2, b_2, c_2, info_dy, 1.0f);
  }
}

W
Weilong Wu 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
template <typename T, typename Context>
void MatmulWithFlattenGradKernel(const Context& dev_ctx,
                                 const DenseTensor& x,
                                 const DenseTensor& y,
                                 const DenseTensor& out_grad,
                                 int x_num_col_dims,
                                 int y_num_col_dims,
                                 DenseTensor* x_grad,
                                 DenseTensor* y_grad) {
  using XPUType = typename XPUTypeTrait<T>::Type;

  auto x_matrix = x.dims().size() > 2
                      ? paddle::framework::ReshapeToMatrix(x, x_num_col_dims)
                      : static_cast<const DenseTensor&>(x);
  auto y_matrix = y.dims().size() > 2
                      ? paddle::framework::ReshapeToMatrix(y, y_num_col_dims)
                      : static_cast<const DenseTensor&>(y);
  DenseTensor dout_mat;
  dout_mat.Resize({phi::flatten_to_2d(x.dims(), x_num_col_dims)[0],
                   phi::flatten_to_2d(y.dims(), y_num_col_dims)[1]});

  if (x_grad != nullptr) {
    x_grad->set_lod(x.lod());
  }
  if (y_grad != nullptr) {
    y_grad->set_lod(y.lod());
  }

  phi::XpuFcInfo info_forward;
  phi::GetFCInfo(x_matrix.dims(), y_matrix.dims(), false, false, &info_forward);

  const XPUType* dout_ptr =
      reinterpret_cast<const XPUType*>(out_grad.data<T>());
  const XPUType* x_ptr = reinterpret_cast<const XPUType*>(x.data<T>());
  const XPUType* y_ptr = reinterpret_cast<const XPUType*>(y.data<T>());

  xpu::Context* xpu_ctx = dev_ctx.x_context();
  xpu::ctx_guard RAII_GUARD(xpu_ctx);
  // begin calculate
  const XPUType* a_1 = reinterpret_cast<const XPUType*>(NULL);
  const XPUType* b_1 = reinterpret_cast<const XPUType*>(NULL);
  const XPUType* a_2 = reinterpret_cast<const XPUType*>(NULL);
  const XPUType* b_2 = reinterpret_cast<const XPUType*>(NULL);
  XPUType* c_1 =
      (x_grad == NULL)
          ? reinterpret_cast<XPUType*>(NULL)
          : reinterpret_cast<XPUType*>(dev_ctx.template Alloc<T>(x_grad));
  XPUType* c_2 =
      (y_grad == NULL)
          ? reinterpret_cast<XPUType*>(NULL)
          : reinterpret_cast<XPUType*>(dev_ctx.template Alloc<T>(y_grad));
  phi::XpuFcInfo info_dx;
  phi::XpuFcInfo info_dy;
  std::tuple<phi::XpuFcInfo,
             phi::XpuFcInfo,
             const XPUType*,
             const XPUType*,
             const XPUType*,
             const XPUType*>
      fc_info = phi::MatmulGradFcInfo(xpu_ctx,
                                      &RAII_GUARD,
                                      info_forward,
                                      false,
                                      false,
                                      x_ptr,
                                      y_ptr,
                                      dout_ptr);
  std::tie(info_dx, info_dy, a_1, b_1, a_2, b_2) = fc_info;
  if (x_grad) {
    phi::MatMulXPUFunction<XPUType>(xpu_ctx, a_1, b_1, c_1, info_dx, 1.0f);
  }
  if (y_grad) {
    phi::MatMulXPUFunction<XPUType>(xpu_ctx, a_2, b_2, c_2, info_dy, 1.0f);
  }
}

160 161 162 163 164 165 166 167
}  // namespace phi

PD_REGISTER_KERNEL(matmul_grad,
                   XPU,
                   ALL_LAYOUT,
                   phi::MatmulGradKernel,
                   float,
                   phi::dtype::float16) {}
W
Weilong Wu 已提交
168 169 170 171 172 173 174

PD_REGISTER_KERNEL(matmul_with_flatten_grad,
                   XPU,
                   ALL_LAYOUT,
                   phi::MatmulWithFlattenGradKernel,
                   float,
                   phi::dtype::float16) {}