test_row_conv.py 4.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from paddle import fluid, nn
import paddle.fluid.dygraph as dg
import paddle.fluid.initializer as I
import paddle.nn.functional as F
import unittest


class RowConvTestCase(unittest.TestCase):
    def __init__(self,
                 methodName='runTest',
                 batch_size=4,
                 num_channels=8,
                 time_steps=12,
                 context_size=3,
                 act=None,
                 dtype="float32"):
        super(RowConvTestCase, self).__init__(methodName=methodName)
        self.batch_size = batch_size
        self.num_channels = num_channels
        self.time_steps = time_steps
        self.context_size = context_size
        self.act = act
        self.dtype = dtype

    def setUp(self):
        input_shape = (self.batch_size, self.time_steps, self.num_channels)
        self.input = np.random.uniform(size=input_shape).astype(self.dtype)
        self.weight_shape = weight_shape = (self.context_size + 1,
                                            self.num_channels)
        self.weight = np.random.uniform(size=weight_shape).astype(self.dtype)

    def fluid_layer(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                x = fluid.data(
                    "input", [-1, -1, self.num_channels], dtype=self.dtype)
                y = fluid.layers.row_conv(
                    x,
                    self.context_size,
                    param_attr=I.NumpyArrayInitializer(self.weight),
                    act=self.act)
        exe = fluid.Executor(place)
        exe.run(start)
        y_np, = exe.run(main, feed={"input": self.input}, fetch_list=[y])
        return y_np

    def functional_declarative(self, place):
        main = fluid.Program()
        start = fluid.Program()
        with fluid.unique_name.guard():
            with fluid.program_guard(main, start):
                x = fluid.data(
                    "input", [-1, -1, self.num_channels], dtype=self.dtype)
                w = fluid.data("weight", self.weight_shape, dtype=self.dtype)
                y = F.row_conv(x, w, act=self.act)
        exe = fluid.Executor(place)
        exe.run(start)
        y_np, = exe.run(main,
                        feed={"input": self.input,
                              "weight": self.weight},
                        fetch_list=[y])
        return y_np

    def functional_imperative(self, place):
        with dg.guard(place):
            x_var = dg.to_variable(self.input)
            w_var = dg.to_variable(self.weight)
            y_var = F.row_conv(x_var, w_var, act=self.act)
            y_np = y_var.numpy()
        return y_np

    def nn_layer(self, place):
        with dg.guard(place):
            x_var = dg.to_variable(self.input)
            conv = nn.RowConv(
                self.num_channels,
                self.context_size,
                param_attr=I.NumpyArrayInitializer(self.weight),
                act=self.act,
                dtype=self.dtype)
            y_var = conv(x_var)
            y_np = y_var.numpy()
        return y_np

    def _test_equivalence(self, place):
        result1 = self.fluid_layer(place)
        result2 = self.functional_declarative(place)
        result3 = self.functional_imperative(place)
        result4 = self.nn_layer(place)
        np.testing.assert_array_almost_equal(result1, result2)
        np.testing.assert_array_almost_equal(result2, result3)
        np.testing.assert_array_almost_equal(result3, result4)

    def runTest(self):
        place = fluid.CPUPlace()
        self._test_equivalence(place)

        if fluid.core.is_compiled_with_cuda():
            palce = fluid.CUDAPlace(0)
            self._test_equivalence(place)


def load_tests(loader, standard_tests, pattern):
    suite = unittest.TestSuite()
    suite.addTest(RowConvTestCase(methodName="runTest"))
    suite.addTest(RowConvTestCase(methodName="runTest", act="sigmoid"))
    suite.addTest(
        RowConvTestCase(
            methodName="runTest", context_size=5, act="sigmoid"))
    return suite


if __name__ == "__main__":
    unittest.main()