common_sparse_table.cc 18.7 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/distributed/table/common_sparse_table.h"
#include <sstream>
17

T
tangwei12 已提交
18
#include "boost/lexical_cast.hpp"
19 20 21 22 23 24 25 26
#include "glog/logging.h"
#include "paddle/fluid/platform/enforce.h"

namespace paddle {
namespace distributed {
class ValueBlock;
}  // namespace distributed
}  // namespace paddle
T
tangwei12 已提交
27 28 29 30

namespace paddle {
namespace distributed {

T
Thunderbrook 已提交
31 32 33
void CommonSparseTable::ProcessALine(const std::vector<std::string>& columns,
                                     const Meta& meta, const int64_t id,
                                     std::vector<std::vector<float>>* values) {
34 35 36
  auto colunmn_size = columns.size();
  auto load_values =
      paddle::string::split_string<std::string>(columns[colunmn_size - 1], ",");
37
  values->reserve(meta.names.size());
T
tangwei12 已提交
38

39 40
  int offset = 0;
  for (int x = 0; x < meta.names.size(); ++x) {
T
tangwei12 已提交
41
    std::vector<float> val;
42 43 44
    auto start = load_values.begin() + offset;
    auto end = load_values.begin() + offset + meta.dims[x];
    PADDLE_ENFORCE_LE(offset + meta.dims[x], load_values.size(),
T
tangwei12 已提交
45
                      paddle::platform::errors::InvalidArgument(
46 47 48
                          "The data format in txt does not meet the field "
                          "requirements defined in meta"));

T
tangwei12 已提交
49 50 51 52 53 54 55 56 57 58 59 60
    std::transform(start, end, std::back_inserter(val), [id](std::string va) {
      float v = 0.0;

      try {
        v = lexical_cast<float>(va);
      } catch (boost::bad_lexical_cast& e) {
        VLOG(0) << "id: " << id << " get unexpected value: " << va
                << " and be reset to: 0.0";
      }
      return v;
    });

T
tangwei12 已提交
61
    values->push_back(val);
62
    offset += meta.dims[x];
T
tangwei12 已提交
63 64 65
  }
}

T
Thunderbrook 已提交
66 67 68 69
void CommonSparseTable::SaveMetaToText(std::ostream* os,
                                       const CommonAccessorParameter& common,
                                       const size_t shard_idx,
                                       const int64_t total) {
70 71 72 73 74 75 76 77 78 79 80
  // save meta
  std::stringstream stream;
  stream << "param=" << common.table_name() << "\n";
  stream << "shard_id=" << shard_idx << "\n";
  stream << "row_names=" << paddle::string::join_strings(common.params(), ',')
         << "\n";
  stream << "row_dims=" << paddle::string::join_strings(common.dims(), ',')
         << "\n";
  stream << "count=" << total << "\n";
  os->write(stream.str().c_str(), sizeof(char) * stream.str().size());
}
T
tangwei12 已提交
81

T
Thunderbrook 已提交
82 83 84 85
int64_t CommonSparseTable::SaveValueToText(std::ostream* os,
                                           std::shared_ptr<ValueBlock> block,
                                           std::shared_ptr<::ThreadPool> pool,
                                           const int mode, int shard_id) {
86
  int64_t save_num = 0;
T
Thunderbrook 已提交
87 88 89 90 91 92
  for (auto& table : block->values_) {
    for (auto& value : table) {
      if (mode == SaveMode::delta && !value.second->need_save_) {
        continue;
      }

T
tangwei12 已提交
93 94
      ++save_num;

T
Thunderbrook 已提交
95
      std::stringstream ss;
T
tangwei12 已提交
96 97
      auto* vs = value.second->data_.data();

T
Thunderbrook 已提交
98
      auto id = value.first;
T
tangwei12 已提交
99

T
Thunderbrook 已提交
100 101 102 103
      ss << id << "\t" << value.second->count_ << "\t"
         << value.second->unseen_days_ << "\t" << value.second->is_entry_
         << "\t";

T
tangwei12 已提交
104 105
      for (int i = 0; i < block->value_length_ - 1; i++) {
        ss << std::to_string(vs[i]) << ",";
T
Thunderbrook 已提交
106
      }
107

T
tangwei12 已提交
108
      ss << std::to_string(vs[block->value_length_ - 1]);
T
Thunderbrook 已提交
109
      ss << "\n";
110

T
Thunderbrook 已提交
111
      os->write(ss.str().c_str(), sizeof(char) * ss.str().size());
112

T
Thunderbrook 已提交
113 114 115
      if (mode == SaveMode::base || mode == SaveMode::delta) {
        value.second->need_save_ = false;
      }
116
    }
T
tangwei12 已提交
117 118
  }

T
Thunderbrook 已提交
119
  return save_num;
T
tangwei12 已提交
120 121
}

T
Thunderbrook 已提交
122 123 124 125
int64_t CommonSparseTable::LoadFromText(
    const std::string& valuepath, const std::string& metapath,
    const int pserver_id, const int pserver_num, const int local_shard_num,
    std::vector<std::shared_ptr<ValueBlock>>* blocks) {
T
tangwei12 已提交
126 127 128 129 130 131 132 133
  Meta meta = Meta(metapath);

  int num_lines = 0;
  std::ifstream file(valuepath);
  std::string line;

  while (std::getline(file, line)) {
    auto values = paddle::string::split_string<std::string>(line, "\t");
T
Thunderbrook 已提交
134
    auto id = lexical_cast<uint64_t>(values[0]);
T
tangwei12 已提交
135 136

    if (id % pserver_num != pserver_id) {
137
      VLOG(3) << "will not load " << values[0] << " from " << valuepath
T
tangwei12 已提交
138 139 140 141 142 143 144 145
              << ", please check id distribution";
      continue;
    }

    auto shard_id = id % local_shard_num;
    auto block = blocks->at(shard_id);

    std::vector<std::vector<float>> kvalues;
T
tangwei12 已提交
146
    ProcessALine(values, meta, id, &kvalues);
147 148 149

    block->Init(id, false);

T
Thunderbrook 已提交
150
    VALUE* value_instant = block->GetValue(id);
T
tangwei12 已提交
151

152
    if (values.size() == 5) {
T
tangwei12 已提交
153 154 155 156
      value_instant->count_ = lexical_cast<int>(values[1]);
      value_instant->unseen_days_ = lexical_cast<int>(values[2]);
      value_instant->is_entry_ =
          static_cast<bool>(lexical_cast<int>(values[3]));
157 158 159 160 161 162 163
    }

    std::vector<float*> block_values = block->Get(id, meta.names, meta.dims);
    auto blas = GetBlas<float>();
    for (int x = 0; x < meta.names.size(); ++x) {
      blas.VCOPY(meta.dims[x], kvalues[x].data(), block_values[x]);
    }
T
tangwei12 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177
  }

  return 0;
}

int32_t CommonSparseTable::initialize() {
  _shards_task_pool.resize(task_pool_size_);
  for (int i = 0; i < _shards_task_pool.size(); ++i) {
    _shards_task_pool[i].reset(new ::ThreadPool(1));
  }

  sync = _config.common().sync();
  VLOG(1) << "table " << _config.common().table_name() << " is sync: " << sync;

178 179
  _global_lr = new float(1.0);

T
tangwei12 已提交
180 181 182
  auto common = _config.common();
  int size = static_cast<int>(common.params().size());

T
tangwei12 已提交
183
  size_t offset = 0;
T
tangwei12 已提交
184 185 186
  for (int x = 0; x < size; ++x) {
    auto& varname = common.params()[x];
    auto& dim = common.dims()[x];
T
tangwei12 已提交
187 188 189 190 191 192 193

    value_idx_[varname] = x;
    value_names_.push_back(varname);
    value_dims_.push_back(dim);
    value_offsets_.push_back(offset);
    initializer_attrs_.push_back(common.initializers()[x]);

T
tangwei12 已提交
194 195
    if (varname == "Param") {
      param_dim_ = dim;
T
tangwei12 已提交
196
      param_offset_ = offset;
T
tangwei12 已提交
197
    }
T
tangwei12 已提交
198 199

    offset += dim;
T
tangwei12 已提交
200 201
  }

T
tangwei12 已提交
202 203 204 205 206 207 208 209 210
  initialize_value();
  initialize_optimizer();
  initialize_recorder();
  return 0;
}

int32_t CommonSparseTable::initialize_recorder() { return 0; }

int32_t CommonSparseTable::initialize_value() {
T
tangwei12 已提交
211
  auto common = _config.common();
T
tangwei12 已提交
212
  shard_values_.reserve(task_pool_size_);
T
tangwei12 已提交
213

T
tangwei12 已提交
214
  for (int x = 0; x < task_pool_size_; ++x) {
T
tangwei12 已提交
215 216 217
    auto shard = std::make_shared<ValueBlock>(
        value_names_, value_dims_, value_offsets_, value_idx_,
        initializer_attrs_, common.entry());
T
tangwei12 已提交
218

T
tangwei12 已提交
219 220
    shard_values_.emplace_back(shard);
  }
T
tangwei12 已提交
221 222 223 224 225 226 227 228 229 230

  auto accessor = _config.accessor();
  std::vector<uint64_t> feasigns;

  for (size_t x = 0; x < accessor.fea_dim(); ++x) {
    if (x % _shard_num == _shard_idx) {
      feasigns.push_back(x);
    }
  }

231
  VLOG(3) << "has " << feasigns.size() << " ids need to be pre inited";
T
tangwei12 已提交
232 233 234 235 236 237 238

  auto buckets = bucket(feasigns.size(), 10);
  for (int x = 0; x < 10; ++x) {
    auto bucket_feasigns = buckets[x + 1] - buckets[x];
    std::vector<uint64_t> ids(bucket_feasigns);
    std::copy(feasigns.begin() + buckets[x], feasigns.begin() + buckets[x + 1],
              ids.begin());
239 240 241 242 243

    std::vector<uint32_t> fres;
    fres.resize(ids.size(), 1);

    auto pull_value = PullSparseValue(ids, fres, param_dim_);
T
tangwei12 已提交
244 245
    std::vector<float> pulls;
    pulls.resize(bucket_feasigns * param_dim_);
246
    pull_sparse(pulls.data(), pull_value);
T
tangwei12 已提交
247 248
  }

T
tangwei12 已提交
249 250 251 252 253 254 255 256
  return 0;
}

int32_t CommonSparseTable::initialize_optimizer() {
  auto common = _config.common();
  auto name = common.name();

  if (name == "sgd") {
T
tangwei12 已提交
257 258
    optimizer_ = std::make_shared<SSGD>(value_names_, value_dims_,
                                        value_offsets_, value_idx_);
259
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
260
  } else if (name == "adam") {
T
tangwei12 已提交
261 262
    optimizer_ = std::make_shared<SAdam>(value_names_, value_dims_,
                                         value_offsets_, value_idx_);
263
    optimizer_->set_global_lr(_global_lr);
T
tangwei12 已提交
264
  } else if (name == "sum") {
T
tangwei12 已提交
265 266
    optimizer_ = std::make_shared<SSUM>(value_names_, value_dims_,
                                        value_offsets_, value_idx_);
T
tangwei12 已提交
267
  } else {
268
    VLOG(3) << "init optimizer failed";
T
tangwei12 已提交
269 270
  }

271
  VLOG(3) << "init optimizer " << name << " done";
T
tangwei12 已提交
272 273 274
  return 0;
}

275 276 277 278 279 280
int32_t CommonSparseTable::set_global_lr(float* lr) {
  _global_lr = lr;
  optimizer_->set_global_lr(_global_lr);
  return 0;
}

T
tangwei12 已提交
281 282
int32_t CommonSparseTable::load(const std::string& path,
                                const std::string& param) {
283
  auto begin = GetCurrentUS();
T
tangwei12 已提交
284 285 286 287
  rwlock_->WRLock();
  LoadFromText(path, param, _shard_idx, _shard_num, task_pool_size_,
               &shard_values_);
  rwlock_->UNLock();
288 289 290 291 292 293 294
  auto end = GetCurrentUS();

  auto varname = _config.common().table_name();
  VLOG(0) << "load " << varname << " with value: " << path
          << " , meta: " << param
          << " using: " << std::to_string((end - begin) / 1e+6) << " seconds";

T
tangwei12 已提交
295 296 297 298 299
  return 0;
}

int32_t CommonSparseTable::save(const std::string& dirname,
                                const std::string& param) {
300
  auto begin = GetCurrentUS();
T
tangwei12 已提交
301 302
  rwlock_->WRLock();
  int mode = std::stoi(param);
303
  VLOG(3) << "sparse table save: " << dirname << " mode: " << mode;
T
tangwei12 已提交
304 305

  auto varname = _config.common().table_name();
306 307
  std::string var_store =
      string::Sprintf("%s/%s%s", dirname, varname, PSERVER_SAVE_SUFFIX);
T
tangwei12 已提交
308 309 310 311 312
  MkDirRecursively(var_store.c_str());

  VLOG(3) << "save " << varname << " in dir: " << var_store << " begin";
  std::vector<std::string> params(_config.common().params().begin(),
                                  _config.common().params().end());
313

T
tangwei12 已提交
314 315 316 317 318
  std::string shard_var_pre =
      string::Sprintf("%s.block%d", varname, _shard_idx);

  std::string value_ = string::Sprintf("%s/%s.txt", var_store, shard_var_pre);

319
  std::unique_ptr<std::ofstream> vs(new std::ofstream(value_));
T
tangwei12 已提交
320 321 322 323

  int64_t total_ins = 0;
  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    // save values
T
Thunderbrook 已提交
324 325 326
    auto shard_save_num =
        SaveValueToText(vs.get(), shard_values_[shard_id],
                        _shards_task_pool[shard_id], mode, shard_id);
327
    total_ins += shard_save_num;
T
tangwei12 已提交
328
  }
329
  vs->close();
T
tangwei12 已提交
330 331

  std::string meta_ = string::Sprintf("%s/%s.meta", var_store, shard_var_pre);
332 333 334 335 336
  std::unique_ptr<std::ofstream> ms(new std::ofstream(meta_));
  SaveMetaToText(ms.get(), _config.common(), _shard_idx, total_ins);
  ms->close();

  auto end = GetCurrentUS();
T
tangwei12 已提交
337
  rwlock_->UNLock();
338 339 340
  VLOG(0) << "save " << varname << " with path: " << value_
          << " using: " << std::to_string((end - begin) / 1e+6) << " seconds";

T
tangwei12 已提交
341 342 343 344 345 346 347
  return 0;
}

std::pair<int64_t, int64_t> CommonSparseTable::print_table_stat() {
  int64_t feasign_size = 0;
  int64_t mf_size = 0;

T
Thunderbrook 已提交
348 349 350 351
  for (auto& shard : shard_values_) {
    for (auto& table : shard->values_) {
      feasign_size += table.size();
    }
T
tangwei12 已提交
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
  }

  return {feasign_size, mf_size};
}

int32_t CommonSparseTable::pour() {
  std::vector<float> values;
  std::vector<uint64_t> keys;

  keys.reserve(pull_reservoir_.size());
  values.reserve(pull_reservoir_.size() * param_dim_);

  for (auto& val : pull_reservoir_) {
    keys.push_back(val.first);
    auto& reservoir = val.second;
    reservoir.avg();
    std::copy(reservoir.values.begin(), reservoir.values.end(),
              std::back_inserter(values));
  }
  _push_sparse(keys.data(), values.data(), pull_reservoir_.size());

  pull_reservoir_.clear();
  return 0;
}

377 378 379 380
int32_t CommonSparseTable::pull_sparse(float* pull_values,
                                       const PullSparseValue& pull_value) {
  auto shard_num = task_pool_size_;
  std::vector<std::future<int>> tasks(shard_num);
T
tangwei12 已提交
381

382
  for (int shard_id = 0; shard_id < shard_num; ++shard_id) {
T
tangwei12 已提交
383
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
384
        [this, shard_id, shard_num, &pull_value, &pull_values]() -> int {
T
tangwei12 已提交
385
          auto& block = shard_values_[shard_id];
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404

          std::vector<int> offsets;
          pull_value.Fission(shard_id, shard_num, &offsets);

          if (pull_value.is_training_) {
            for (auto& offset : offsets) {
              auto feasign = pull_value.feasigns_[offset];
              auto frequencie = pull_value.frequencies_[offset];
              auto* value = block->Init(feasign, true, frequencie);
              std::copy_n(value + param_offset_, param_dim_,
                          pull_values + param_dim_ * offset);
            }
          } else {
            for (auto& offset : offsets) {
              auto feasign = pull_value.feasigns_[offset];
              auto* value = block->Init(feasign, false);
              std::copy_n(value + param_offset_, param_dim_,
                          pull_values + param_dim_ * offset);
            }
T
tangwei12 已提交
405
          }
T
tangwei12 已提交
406

T
tangwei12 已提交
407 408 409 410 411 412 413 414 415 416
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

T
Thunderbrook 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
int32_t CommonSparseTable::pull_sparse_ptr(char** pull_values,
                                           const uint64_t* keys, size_t num) {
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &offset_bucket, &pull_values]() -> int {
          auto& block = shard_values_[shard_id];
          auto& offsets = offset_bucket[shard_id];

          for (int i = 0; i < offsets.size(); ++i) {
            auto offset = offsets[i];
            auto id = keys[offset];
            auto* value = block->InitGet(id);
            // std::copy_n(value + param_offset_, param_dim_,
            //            pull_values + param_dim_ * offset);
T
tangwei12 已提交
441
            pull_values[offset] = reinterpret_cast<char*>(value);
T
Thunderbrook 已提交
442 443 444 445 446 447 448 449 450 451 452 453
          }

          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

T
tangwei12 已提交
454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
int32_t CommonSparseTable::_push_sparse(const uint64_t* keys,
                                        const float* values, size_t num) {
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &values, num, &offset_bucket]() -> int {
          auto& offsets = offset_bucket[shard_id];
          optimizer_->update(keys, values, num, offsets,
                             shard_values_[shard_id].get());
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

int32_t CommonSparseTable::push_sparse(const uint64_t* keys,
                                       const float* values, size_t num) {
  if (sync) {
    std::future<int> task =
        _shards_task_pool[0]->enqueue([this, &keys, &values, num]() -> int {
          for (int x = 0; x < num; ++x) {
            auto id = keys[x];
            auto has = pull_reservoir_.find(id);

            if (has == pull_reservoir_.end()) {
              pull_reservoir_[id] = ReservoirValue<float>(param_dim_);
            }

            auto& reservoir = pull_reservoir_[id];
            reservoir.add(values + x * param_dim_, param_dim_);
          }
          return 0;
        });
    task.wait();
  } else {
    _push_sparse(keys, values, num);
  }

  return 0;
}

T
Thunderbrook 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
int32_t CommonSparseTable::push_sparse(const uint64_t* keys,
                                       const float** values, size_t num) {
  _push_sparse(keys, values, num);
  return 0;
}

int32_t CommonSparseTable::_push_sparse(const uint64_t* keys,
                                        const float** values, size_t num) {
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
        [this, shard_id, &keys, &values, num, &offset_bucket]() -> int {
          auto& offsets = offset_bucket[shard_id];
          for (size_t i = 0; i < offsets.size(); ++i) {
            std::vector<uint64_t> tmp_off = {0};
            optimizer_->update(keys + offsets[i], values[offsets[i]], num,
                               tmp_off, shard_values_[shard_id].get());
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

T
tangwei12 已提交
545 546 547 548 549 550 551 552 553 554 555 556 557 558
int32_t CommonSparseTable::push_sparse_param(const uint64_t* keys,
                                             const float* values, size_t num) {
  std::vector<std::vector<uint64_t>> offset_bucket;
  offset_bucket.resize(task_pool_size_);

  for (int x = 0; x < num; ++x) {
    auto y = keys[x] % task_pool_size_;
    offset_bucket[y].push_back(x);
  }

  std::vector<std::future<int>> tasks(task_pool_size_);

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    tasks[shard_id] = _shards_task_pool[shard_id]->enqueue(
T
tangwei12 已提交
559
        [this, shard_id, &keys, &offset_bucket, &values]() -> int {
T
tangwei12 已提交
560 561 562 563 564 565
          auto& block = shard_values_[shard_id];
          auto& offsets = offset_bucket[shard_id];

          for (int i = 0; i < offsets.size(); ++i) {
            auto offset = offsets[i];
            auto id = keys[offset];
566
            auto* value = block->Init(id, false);
T
tangwei12 已提交
567 568
            std::copy_n(values + param_dim_ * offset, param_dim_,
                        value + param_offset_);
569
            block->SetEntry(id, true);
T
tangwei12 已提交
570 571 572 573 574 575 576 577 578 579 580 581 582
          }
          return 0;
        });
  }

  for (size_t shard_id = 0; shard_id < tasks.size(); ++shard_id) {
    tasks[shard_id].wait();
  }
  return 0;
}

int32_t CommonSparseTable::flush() { return 0; }

583 584
int32_t CommonSparseTable::shrink(const std::string& param) {
  int threshold = std::stoi(param);
585
  VLOG(3) << "sparse table shrink: " << threshold;
586 587 588

  for (int shard_id = 0; shard_id < task_pool_size_; ++shard_id) {
    // shrink
589
    VLOG(4) << shard_id << " " << task_pool_size_ << " begin shrink";
590 591
    shard_values_[shard_id]->Shrink(threshold);
  }
T
tangwei12 已提交
592 593
  return 0;
}
594

T
tangwei12 已提交
595 596 597 598
void CommonSparseTable::clear() { VLOG(0) << "clear coming soon"; }

}  // namespace distributed
}  // namespace paddle