seq_expand_op.h 3.3 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/op_registry.h"
W
wanghaoshuang 已提交
18
#include "paddle/memory/memcpy.h"
W
wanghaoshuang 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31

namespace paddle {
namespace operators {

using LoDTensor = framework::LoDTensor;

template <typename Place, typename T>
class SeqExpandKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
    auto* x = context.Input<LoDTensor>("X");
    auto* out = context.Output<LoDTensor>("Out");
    const T* x_data = x->data<T>();
W
wanghaoshuang 已提交
32 33
    auto x_dims = x->dims();
    auto x_lod = x->lod();
W
wanghaoshuang 已提交
34

W
wanghaoshuang 已提交
35
    if (x_lod.size() == 0) {
W
wanghaoshuang 已提交
36
      framework::Vector<size_t> level;
W
wanghaoshuang 已提交
37 38
      for (int i = 0; i < x->dims()[0] + 1; ++i) {
        level.push_back(i);
W
wanghaoshuang 已提交
39
      }
W
wanghaoshuang 已提交
40 41 42
      x_lod.push_back(level);
    } else {
      x_lod.insert(x_lod.begin(), x_lod[0]);
W
wanghaoshuang 已提交
43
    }
W
wanghaoshuang 已提交
44 45

    size_t repeat = static_cast<size_t>(context.Attr<int>("repeat"));
W
wanghaoshuang 已提交
46
    framework::Vector<size_t> repeats;
W
wanghaoshuang 已提交
47 48 49
    if (repeat != 0) {
      for (int i = 0; i < x_lod[0].size() - 1; ++i) {
        repeats.push_back(repeat);
W
wanghaoshuang 已提交
50
      }
W
wanghaoshuang 已提交
51 52 53 54
      std::vector<int64_t> dims = framework::vectorize(x->dims());
      dims[0] = dims[0] * repeat;
      auto out_dims = framework::make_ddim(dims);
      out->Resize(out_dims);
W
wanghaoshuang 已提交
55
    } else {
W
wanghaoshuang 已提交
56 57 58 59 60
      auto* y = context.Input<LoDTensor>("Y");
      auto y_lod = y->lod();
      for (int i = 0; i < y_lod[0].size() - 1; ++i) {
        repeats.push_back((y_lod[0][i + 1] - y_lod[0][i]) /
                          (x_lod[0][i + 1] - x_lod[0][i]));
W
wanghaoshuang 已提交
61
      }
W
wanghaoshuang 已提交
62
      out->Resize(y->dims());
W
wanghaoshuang 已提交
63
    }
W
wanghaoshuang 已提交
64 65

    framework::LoD out_lod;
W
wanghaoshuang 已提交
66
    auto level0 = framework::repeat_lod(x_lod[0], x_lod[0], repeats, true);
W
wanghaoshuang 已提交
67 68
    out_lod.push_back(level0);
    for (int i = 1; i < x_lod.size(); ++i) {
W
wanghaoshuang 已提交
69 70
      out_lod.push_back(
          framework::repeat_lod(x_lod[i], x_lod[0], repeats, false));
W
wanghaoshuang 已提交
71 72 73 74
    }

    size_t element_len = framework::product(x_dims) / x_dims[0];
    T* out_data = out->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
75 76

    // copy data
W
wanghaoshuang 已提交
77
    Place place = boost::get<Place>(context.GetPlace());
W
wanghaoshuang 已提交
78 79 80 81 82 83 84 85 86 87
    size_t count = 0;
    for (size_t i = 0; i < repeats.size(); ++i) {
      count = element_len * (x_lod[0][i + 1] - x_lod[0][i]);
      for (size_t j = 0; j < repeats[i]; ++j) {
        memory::Copy(place, out_data, place, x_data, sizeof(T) * count);
        out_data += count;
      }
      x_data += count;
    }

W
wanghaoshuang 已提交
88
    out->set_lod(out_lod);
W
wanghaoshuang 已提交
89 90 91 92 93 94 95
  }
};

template <typename Place, typename T>
class SeqExpandGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& context) const override {
W
wanghaoshuang 已提交
96 97 98
    auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
    d_x->mutable_data<T>(context.GetPlace());
W
wanghaoshuang 已提交
99 100 101 102 103
  }
};

}  // namespace operators
}  // namespace paddle