gru_op.h 10.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15

#pragma once
16 17 18
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yi Wang 已提交
19 20 21 22
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/gru_compute.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/sequence2batch.h"
G
guosheng 已提交
23 24 25 26

namespace paddle {
namespace operators {

G
guosheng 已提交
27 28 29
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;

Q
QI JUN 已提交
30 31
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
D
dzhwinter 已提交
32 33
                             const framework::Tensor& src,
                             framework::Vector<size_t> index_lod,
G
guosheng 已提交
34
                             framework::Tensor* dst, bool indexed_src) {
Q
QI JUN 已提交
35
  math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
G
guosheng 已提交
36
  dst->mutable_data<T>(src.dims(), ctx.GetPlace());
D
dzhwinter 已提交
37
  row_shuffle(ctx, src, index_lod, *dst, indexed_src);
G
guosheng 已提交
38 39
}

Q
QI JUN 已提交
40
template <typename DeviceContext, typename T>
G
guosheng 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
class GRUKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* input = context.Input<LoDTensor>("Input");
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* bias = context.Input<Tensor>("Bias");
    auto* batch_gate = context.Output<LoDTensor>("BatchGate");
    batch_gate->mutable_data<T>(context.GetPlace());
    auto* batch_reset_hidden_prev =
        context.Output<LoDTensor>("BatchResetHiddenPrev");
    batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
    auto* batch_hidden = context.Output<LoDTensor>("BatchHidden");
    batch_hidden->mutable_data<T>(context.GetPlace());
    auto* hidden = context.Output<LoDTensor>("Hidden");
    hidden->mutable_data<T>(context.GetPlace());

    context.ShareLoD("Input", "Hidden");

    auto hidden_dims = hidden->dims();

    bool is_reverse = context.Attr<bool>("is_reverse");
Q
QI JUN 已提交
64 65
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
    auto& dev_ctx = context.template device_context<DeviceContext>();
66
    to_batch(dev_ctx, *input, *batch_gate, true, is_reverse);
G
guosheng 已提交
67 68

    if (bias) {
Q
QI JUN 已提交
69
      math::RowwiseAdd<DeviceContext, T> add_bias;
70
      add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
G
guosheng 已提交
71 72
    }

73
    int frame_size = hidden_dims[1];
74
    math::GRUMetaValue<T> gru_value;
G
guosheng 已提交
75 76
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
G
guosheng 已提交
77
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);
G
guosheng 已提交
78
    Tensor ordered_h0;
D
dzhwinter 已提交
79 80 81

    framework::Vector<size_t> order(batch_gate->lod()[2]);

G
guosheng 已提交
82 83 84 85
    if (h0) {
      // Since the batch computing for GRU reorders the input sequences
      // according to their length. The initialized cell state also needs
      // to reorder.
Q
QI JUN 已提交
86 87 88
      ReorderInitState<DeviceContext, T>(
          context.template device_context<DeviceContext>(), *h0, order,
          &ordered_h0, true);
G
guosheng 已提交
89
      gru_value.prev_out_value = ordered_h0.data<T>();
G
guosheng 已提交
90
    } else {
G
guosheng 已提交
91
      gru_value.prev_out_value = nullptr;
G
guosheng 已提交
92
    }
G
guosheng 已提交
93 94
    auto batch_starts = batch_gate->lod()[0];
    size_t num_batch = batch_starts.size() - 1;
95 96 97 98
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));
G
guosheng 已提交
99 100 101 102 103 104 105 106
    for (size_t n = 0; n < num_batch; n++) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
      Tensor hidden_t = batch_hidden->Slice(bstart, bend);
G
guosheng 已提交
107 108 109
      gru_value.output_value = hidden_t.data<T>();
      gru_value.gate_value = gate_t.data<T>();
      gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
Q
QI JUN 已提交
110
      math::GRUUnitFunctor<DeviceContext, T>::compute(
111 112
          dev_ctx, gru_value, frame_size, cur_batch_size, active_node,
          active_gate);
G
guosheng 已提交
113
      gru_value.prev_out_value = gru_value.output_value;
G
guosheng 已提交
114 115
    }

Q
QI JUN 已提交
116
    math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
G
guosheng 已提交
117
    batch_hidden->set_lod(batch_gate->lod());
118
    to_seq(dev_ctx, *batch_hidden, *hidden);
G
guosheng 已提交
119 120 121 122 123 124 125
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

Q
QI JUN 已提交
126
template <typename DeviceContext, typename T>
G
guosheng 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
class GRUGradKernel : public framework::OpKernel<T> {
 public:
  void BatchCompute(const framework::ExecutionContext& context) const {
    auto* h0 = context.Input<Tensor>("H0");
    auto* weight = context.Input<Tensor>("Weight");
    const T* weight_data = weight->data<T>();
    auto* batch_gate = context.Input<LoDTensor>("BatchGate");
    auto* batch_reset_hidden_prev =
        context.Input<LoDTensor>("BatchResetHiddenPrev");
    auto* batch_hidden = context.Input<LoDTensor>("BatchHidden");
    auto* hidden = context.Input<LoDTensor>("Hidden");
    auto* hidden_grad =
        context.Input<LoDTensor>(framework::GradVarName("Hidden"));
    auto* input_grad =
        context.Output<LoDTensor>(framework::GradVarName("Input"));
    auto* h0_grad = context.Output<Tensor>(framework::GradVarName("H0"));
    auto* weight_grad =
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));

    auto gate_dims = batch_gate->dims();
    auto hidden_dims = hidden->dims();
    int frame_size = hidden_dims[1];

Q
QI JUN 已提交
151
    math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
G
guosheng 已提交
152 153 154 155 156
    LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad;
    batch_hidden_grad.mutable_data<T>(hidden_dims, context.GetPlace());
    batch_gate_grad.mutable_data<T>(gate_dims, context.GetPlace());
    batch_reset_hidden_prev_grad.mutable_data<T>(hidden_dims,
                                                 context.GetPlace());
Q
QI JUN 已提交
157 158
    math::SetConstant<DeviceContext, T> zero;
    auto& dev_ctx = context.template device_context<DeviceContext>();
159 160 161
    zero(dev_ctx, &batch_hidden_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_gate_grad, static_cast<T>(0.0));
    zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast<T>(0.0));
G
guosheng 已提交
162

G
guosheng 已提交
163
    Tensor ordered_h0, ordered_h0_grad;
D
dzhwinter 已提交
164 165 166

    framework::Vector<size_t> order(batch_gate->lod()[2]);

G
guosheng 已提交
167
    if (h0) {
Q
QI JUN 已提交
168 169
      ReorderInitState<DeviceContext, T>(dev_ctx, *h0, order, &ordered_h0,
                                         true);
G
guosheng 已提交
170 171 172
    }
    if (h0_grad) {
      ordered_h0_grad.mutable_data<T>(h0_grad->dims(), context.GetPlace());
Q
QI JUN 已提交
173 174
      zero(context.template device_context<DeviceContext>(), &ordered_h0_grad,
           static_cast<T>(0.0));
G
guosheng 已提交
175 176
    }

G
guosheng 已提交
177 178
    bool is_reverse = context.Attr<bool>("is_reverse");
    batch_hidden_grad.set_lod(batch_hidden->lod());
179
    to_batch(dev_ctx, *hidden_grad, batch_hidden_grad, false, is_reverse);
G
guosheng 已提交
180

181
    math::GRUMetaValue<T> gru_value;
G
guosheng 已提交
182 183
    gru_value.gate_weight = const_cast<T*>(weight_data);
    gru_value.state_weight =
G
guosheng 已提交
184 185
        const_cast<T*>(weight_data + 2 * frame_size * frame_size);

186
    math::GRUMetaGrad<T> gru_grad;
G
guosheng 已提交
187
    if (weight_grad) {
G
guosheng 已提交
188
      gru_grad.gate_weight_grad =
G
guosheng 已提交
189
          weight_grad->mutable_data<T>(context.GetPlace());
190
      zero(dev_ctx, weight_grad, static_cast<T>(0.0));
G
guosheng 已提交
191
      gru_grad.state_weight_grad =
G
guosheng 已提交
192 193
          weight_grad->data<T>() + 2 * frame_size * frame_size;
    } else {
G
guosheng 已提交
194 195
      gru_grad.gate_weight_grad = nullptr;
      gru_grad.state_weight_grad = nullptr;
G
guosheng 已提交
196 197 198 199
    }

    auto batch_starts = batch_hidden_grad.lod()[0];
    size_t num_batch = batch_starts.size() - 1;
200 201 202 203
    auto active_node = math::detail::GetActivationType(
        context.Attr<std::string>("activation"));
    auto active_gate = math::detail::GetActivationType(
        context.Attr<std::string>("gate_activation"));
G
guosheng 已提交
204 205 206 207 208 209
    for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
      int bstart = static_cast<int>(batch_starts[n]);
      int bend = static_cast<int>(batch_starts[n + 1]);
      int cur_batch_size = bend - bstart;

      Tensor gate_t = batch_gate->Slice(bstart, bend);
G
guosheng 已提交
210
      gru_value.gate_value = gate_t.data<T>();
G
guosheng 已提交
211
      Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
G
guosheng 已提交
212
      gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
G
guosheng 已提交
213 214

      Tensor hidden_grad_t = batch_hidden_grad.Slice(bstart, bend);
G
guosheng 已提交
215
      gru_grad.output_grad = hidden_grad_t.data<T>();
G
guosheng 已提交
216
      Tensor gate_grad_t = batch_gate_grad.Slice(bstart, bend);
G
guosheng 已提交
217
      gru_grad.gate_grad = gate_grad_t.data<T>();
G
guosheng 已提交
218 219
      Tensor reset_hidden_prev_grad_t =
          batch_reset_hidden_prev_grad.Slice(bstart, bend);
G
guosheng 已提交
220
      gru_grad.reset_output_grad = reset_hidden_prev_grad_t.data<T>();
G
guosheng 已提交
221
      if (n == 0) {
G
guosheng 已提交
222 223
        gru_value.prev_out_value = h0 ? ordered_h0.data<T>() : nullptr;
        gru_grad.prev_out_grad =
G
guosheng 已提交
224
            h0 && h0_grad ? ordered_h0_grad.data<T>() : nullptr;
G
guosheng 已提交
225 226 227
      } else {
        int bstart_pre = static_cast<int>(batch_starts[n - 1]);
        Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart);
G
guosheng 已提交
228
        gru_value.prev_out_value = hidden_prev_t.data<T>();
G
guosheng 已提交
229
        Tensor hidden_prev_grad_t = batch_hidden_grad.Slice(bstart_pre, bstart);
G
guosheng 已提交
230
        gru_grad.prev_out_grad = hidden_prev_grad_t.data<T>();
G
guosheng 已提交
231 232
      }

Q
QI JUN 已提交
233
      math::GRUUnitGradFunctor<DeviceContext, T>::compute(
234 235
          dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size, active_node,
          active_gate);
G
guosheng 已提交
236 237 238
    }
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
239
      math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
G
guosheng 已提交
240
      batch_gate_grad.set_lod(batch_gate->lod());
241
      to_seq(dev_ctx, batch_gate_grad, *input_grad);
G
guosheng 已提交
242 243 244
    }
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
Q
QI JUN 已提交
245
      math::ColwiseSum<DeviceContext, T> col_sum;
246
      col_sum(dev_ctx, batch_gate_grad, bias_grad);
G
guosheng 已提交
247
    }
G
guosheng 已提交
248
    if (h0 && h0_grad) {
Q
QI JUN 已提交
249 250
      ReorderInitState<DeviceContext, T>(dev_ctx, ordered_h0_grad, order,
                                         h0_grad, false);
G
guosheng 已提交
251
    }
G
guosheng 已提交
252 253 254 255 256 257 258 259 260
  }

  void Compute(const framework::ExecutionContext& context) const override {
    BatchCompute(context);
  }
};

}  // namespace operators
}  // namespace paddle