test_run_program_op.py 16.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import contextlib
import unittest
import numpy as np

19
import paddle
20
from paddle import _legacy_C_ops
21
import paddle.fluid as fluid
22
from paddle.fluid import core, framework
23
from paddle.fluid.layers.utils import _hash_with_id
0
0x45f 已提交
24
from paddle.fluid.framework import _in_eager_mode_
25 26 27 28
from paddle.fluid.executor import (
    _is_enable_standalone_executor,
    _is_dy2st_enable_standalone_executor,
)
29
from paddle.fluid.dygraph.base import switch_to_static_graph
30

31 32
paddle.enable_static()

33 34 35 36 37 38 39 40 41 42 43 44

@contextlib.contextmanager
def program_scope_guard():
    prog = fluid.Program()
    startup_prog = fluid.Program()
    scope = fluid.core.Scope()
    with fluid.scope_guard(scope):
        with fluid.program_guard(prog, startup_prog):
            with fluid.unique_name.guard():
                yield


45 46 47 48
@switch_to_static_graph
def _add_build_strategy_for(input_program, start_op_index, end_op_index):
    compiled_program = paddle.static.CompiledProgram(
        core.Graph(input_program.desc, start_op_index, end_op_index),
49 50 51 52 53
        build_strategy=paddle.static.BuildStrategy(),
    )
    compiled_program._compile(
        core.Scope(), paddle.framework._current_expected_place()
    )
54 55 56 57 58 59 60 61 62 63
    ir_graph = paddle.fluid.framework.IrGraph(compiled_program._graph)
    builded_program = ir_graph.to_program()
    return builded_program


@switch_to_static_graph
def _build_program_by_desc(program_desc):
    prog = framework.Program()
    prog.desc = program_desc
    prog.blocks = [
64
        framework.Block(prog, i) for i in range(prog.desc.num_blocks())
65 66 67 68 69
    ]
    prog._sync_with_cpp()
    return prog


70
# NOTE: Because RunProgramOp has a special output of type std::vector<Scope *>,
71 72 73 74 75 76 77 78 79
# the OpTest cannot be used in RunProgramOp. The variable type cannot be specified
# when creating output variables in OpTest, default type is LoDTensor
# NOTE: the gradient test method in OpTest also cannot be used for RunProgramOp,
# because it hold BlockDesc type attr, OperatorFactory can't parse this attr type
# when create Operator, so here compare gradients with static graph
# NOTE: Here rewrite a simple unittest framework for RunProgramOp
class RunProgramOpTest(unittest.TestCase):
    def build_model(self):
        raise NotImplementedError(
80 81
            "RunProgramOp test should implement build_model"
        )
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    def check_output(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            # TODO: RunProgramOp is not recommended for use in static mode now
            self.expect_outs = self.run_static_model(place, is_test=True)
            self.check_output_with_place(place)

    def check_grad(self):
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            # TODO: RunProgramOp is not recommended for use in static mode now
            self.expect_grads = self.run_static_model(place, is_test=False)
            self.check_grad_with_place(place)

    def run_static_model(self, place, is_test=True):
        with program_scope_guard():
            startup_program = fluid.default_startup_program()
            main_program = fluid.default_main_program()

            self.build_model()

            exe = fluid.Executor(place)
            exe.run(startup_program)

            if is_test:
                fetch_list = self.output_names['Out']
            else:
                fetch_list = self.get_param_grad_names()

116 117 118
            outs = exe.run(
                main_program, feed=self.inputs['X'], fetch_list=fetch_list
            )
119 120 121 122 123 124 125
            return outs

    def get_program_desc(self):
        with program_scope_guard():
            fwd_op_num = self.build_model()
            return fluid.default_main_program().desc, fwd_op_num

126 127 128
    def get_forward_backward_program_desc(
        self, whole_program_desc, forward_op_num, output_num
    ):
129 130 131
        program = _build_program_by_desc(whole_program_desc)
        forward_program = _add_build_strategy_for(program, 0, forward_op_num)
        backward_program = _add_build_strategy_for(
132 133 134 135
            program,
            forward_op_num + 2 * output_num,
            program.desc.block(0).op_size(),
        )
136 137
        return forward_program.desc, backward_program.desc

138
    def prepare_attrs(self):
139 140
        return [
            'global_block',
141 142 143 144 145 146 147
            self.program_desc.block(0),
            'start_op_index',
            0,
            'end_op_index',
            self.fwd_op_num,
            'program_id',
            _hash_with_id(self.program_desc, self),
148
        ]
149 150 151 152 153 154 155 156 157 158 159 160

    def get_param_grad_names(self):
        grad_names = []
        for var_name in self.inputs['Params']:
            grad_names.append(var_name + core.grad_var_suffix())
        return grad_names

    def check_output_with_place(self, place):
        # Step 1. run op
        actual_outs = self.calc_dygraph_output(place)

        # Step 2. compare output
161
        for expect_v, actual_v in zip(self.expect_outs, actual_outs):
162 163 164
            np.testing.assert_allclose(
                expect_v, actual_v.numpy(), rtol=1e-05, atol=1e-05
            )
165 166 167 168 169 170

    def check_grad_with_place(self, place):
        # Step 1. calc grads
        actual_grads = self.calc_dygraph_grad(place)

        # Step 2. compare grads
171
        for expect_v, actual_v in zip(self.expect_grads, actual_grads):
172
            np.testing.assert_array_almost_equal(expect_v, actual_v)
173 174 175
            np.testing.assert_allclose(
                expect_v, actual_v, rtol=1e-05, atol=1e-05
            )
176 177 178

    def prepare_dygraph_input(self, place, return_param_list=False):
        def create_var_base(is_input, name, np_value, stop_gradient):
0
0x45f 已提交
179
            if _in_eager_mode_:
180 181 182
                var = core.eager.Tensor(
                    value=np_value, name=name, place=place, zero_copy=True
                )
0
0x45f 已提交
183
            else:
184 185 186
                var = core.VarBase(
                    value=np_value, name=name, place=place, zero_copy=True
                )
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
            var.stop_gradient = stop_gradient
            return var

        # build inputs
        inputs = {}
        param_list = []
        inputs['X'] = []
        for name, np_value in self.inputs['X'].items():
            var = create_var_base(True, name, np_value, True)
            inputs['X'].append(var)
        inputs['Params'] = []
        for name, np_value in self.inputs['Params'].items():
            var = create_var_base(True, name, np_value, False)
            inputs['Params'].append(var)
            if return_param_list:
                param_list.append(var)

        if return_param_list:
            return inputs, param_list
        return inputs

    def prepare_dygraph_output(self):
        def create_var_base(is_input, name):
            var = framework._varbase_creator(dtype=None, shape=None, name=name)
            var.stop_gradient = False
            return var

        # build outputs
        outputs = {}
        outputs['Out'] = []
        for name in self.output_names['Out']:
            outputs['Out'].append(create_var_base(False, name))

0
0x45f 已提交
220 221 222 223 224 225
        if _in_eager_mode_:
            outputs['OutScope'] = [core.Scope()]
        else:
            outputs['OutScope'] = framework._varbase_creator(
                type=core.VarDesc.VarType.STEP_SCOPES,
                name="program_out_scope",
226 227
                persistable=True,
            )
0
0x45f 已提交
228 229
            inner_scope = core.Scope()
            outputs['OutScope'].value().set_scope(inner_scope)
230 231

        outputs['DOut'] = [create_var_base(False, "Fake_var")]
232 233 234
        return outputs

    def calc_dygraph_output(self, place):
235 236 237
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

238 239 240 241
        with fluid.dygraph.guard(place):
            inputs = self.prepare_dygraph_input(place)
            outputs = self.prepare_dygraph_output()

242 243 244 245 246 247 248 249 250 251 252
            (
                forward_program_desc,
                backward_program_desc,
            ) = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out'])
            )

            use_interpretorcore = (
                _is_enable_standalone_executor()
                and _is_dy2st_enable_standalone_executor()
            )
253 254 255
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
                    (
                        'forward_global_block',
                        forward_program_desc.block(0),
                        'backward_global_block',
                        backward_program_desc.block(0),
                    )
                )

            _legacy_C_ops.run_program(
                inputs['X'],
                inputs['Params'],
                outputs['Out'],
                outputs['OutScope'],
                outputs['DOut'],
                None,
                *self.attrs
            )
273

274 275 276
            return outputs['Out']

    def calc_dygraph_grad(self, place):
277 278 279
        self.program_desc, self.fwd_op_num = self.get_program_desc()
        self.attrs = self.prepare_attrs()

280 281 282 283 284
        with fluid.dygraph.guard(place):
            # Step 1. run forward
            inputs, input_param_list = self.prepare_dygraph_input(place, True)
            outputs = self.prepare_dygraph_output()

285 286 287 288 289 290 291 292 293 294 295
            (
                forward_program_desc,
                backward_program_desc,
            ) = self.get_forward_backward_program_desc(
                self.program_desc, self.fwd_op_num, len(outputs['Out'])
            )

            use_interpretorcore = (
                _is_enable_standalone_executor()
                and _is_dy2st_enable_standalone_executor()
            )
296 297 298
            self.attrs.extend(('use_interpretorcore', use_interpretorcore))
            if use_interpretorcore:
                self.attrs.extend(
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
                    (
                        'forward_global_block',
                        forward_program_desc.block(0),
                        'backward_global_block',
                        backward_program_desc.block(0),
                    )
                )

            _legacy_C_ops.run_program(
                inputs['X'],
                inputs['Params'],
                outputs['Out'],
                outputs['OutScope'],
                outputs['DOut'],
                None,
                *self.attrs
            )
316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338

            for param in input_param_list:
                var_type = self._get_grad_vartype(param.name)
                if var_type is None:
                    continue
                param._set_grad_type(var_type)

            # Step 2. run backward
            # NOTE: in unittest, only support single output now
            actual_outs = outputs['Out']
            assert len(actual_outs) == 1
            actual_outs[0].backward()

            # Step 3. prepare grads
            grads = []
            for param in input_param_list:
                grad = param.gradient()
                grads.append(grad)
            return grads

    def _get_grad_vartype(self, name):
        assert self.program_desc is not None
        grad_name = name + core.grad_var_suffix()
339
        for i in range(self.program_desc.num_blocks()):
340
            block = self.program_desc.block(i)
341
            var_desc = block.find_var_recursive(grad_name.encode())
342 343 344 345 346 347 348 349 350
            return var_desc.type() if var_desc is not None else None


class TestRunProgramOpWithFC(RunProgramOpTest):
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {
            'X': ['img'],
351
            'Params': ['weight_param', 'bias_param'],
352 353 354 355 356
        }
        self.output_names = {'Out': ['fc_0.tmp_2']}

        self.inputs = {
            'X': {
357 358 359
                self.input_names['X'][0]: np.random.random(
                    (32, 1, 28, 28)
                ).astype(self.dtype)
360 361
            },
            'Params': {
362 363 364 365 366 367 368
                self.input_names['Params'][0]: np.random.random(
                    (784, 10)
                ).astype(self.dtype),
                self.input_names['Params'][1]: np.random.random(
                    (32, 10)
                ).astype(self.dtype),
            },
369 370 371 372 373 374 375 376 377 378
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
        self.check_grad()

    def build_model(self):
        # 1. simple model
379 380 381 382 383
        img = fluid.data(
            name=self.input_names['X'][0],
            shape=[None, 1, 28, 28],
            dtype='float32',
        )
384 385 386
        weight_attr = fluid.ParamAttr(
            name=self.input_names['Params'][0],
            learning_rate=0.5,
387
            initializer=fluid.initializer.NumpyArrayInitializer(
388 389 390 391
                self.inputs['Params'][self.input_names['Params'][0]]
            ),
            trainable=True,
        )
392 393 394
        bias_attr = fluid.ParamAttr(
            name=self.input_names['Params'][1],
            learning_rate=0.5,
395
            initializer=fluid.initializer.NumpyArrayInitializer(
396 397 398 399 400 401 402 403 404 405 406
                self.inputs['Params'][self.input_names['Params'][1]]
            ),
            trainable=True,
        )
        pred = fluid.layers.fc(
            input=img,
            size=10,
            param_attr=weight_attr,
            bias_attr=bias_attr,
            act='relu',
        )
407 408 409 410 411 412 413 414 415 416 417 418 419
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[pred], inputs=[img])

        return fwd_op_num


class TestRunProgramOpWithEmbedding(RunProgramOpTest):
    def setUp(self):
        self.op_type = "run_program"
        self.dtype = np.float32
        self.input_names = {'X': ['x'], 'Params': ['emb_weight']}
420
        self.output_names = {'Out': ['sum_0.tmp_0']}
421 422

        self.inputs = {
423
            'X': {'x': np.array([[1, 3, 0, 4, 7]]).astype("int64")},
424 425
            'Params': {
                'emb_weight': np.random.random(size=(10, 16)).astype("float32")
426
            },
427 428 429 430 431 432
        }

    def test_check_output(self):
        self.check_output()

    def test_check_grad(self):
433
        # NOTE: fecth not support SelectedRows, catnot compare
434 435 436 437 438 439 440 441 442 443
        # sparse gradients with staic mode, only run dygraph
        places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            places.append(fluid.CUDAPlace(0))
        for place in places:
            # TODO: RunProgramOp is not recommended for use in static mode now
            self.calc_dygraph_grad(place)

    def build_model(self):
        # 1. simple model
444 445 446
        x = fluid.layers.data(
            name=self.input_names['X'][0], shape=[5], dtype='int64'
        )
447 448 449 450 451 452
        emb = fluid.input.embedding(
            input=x,
            size=[10, 16],
            param_attr=fluid.ParamAttr(
                name="emb_weight",
                learning_rate=10,
453
                initializer=fluid.initializer.NumpyArrayInitializer(
454 455 456 457 458
                    self.inputs['Params'][self.input_names['Params'][0]]
                ),
            ),
            is_sparse=True,
        )
459
        y = paddle.sum(emb, axis=-1)
460 461 462 463 464 465 466 467
        # 2. get forward op num
        fwd_op_num = fluid.default_main_program().global_block().desc.op_size()
        # 3. append backward
        grads = fluid.backward.gradients(targets=[y], inputs=[x])

        return fwd_op_num


468 469
class Net(paddle.nn.Layer):
    def __init__(self):
470
        super().__init__()
471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515
        self.fc1 = paddle.nn.Linear(10, 10)
        self.fc2 = paddle.nn.Linear(10, 1)

    def forward(self, x):
        out = self.fc1(x)
        out.stop_gradient = True
        out = self.fc2(out)
        return out


class TestParametersWithStopGradient(unittest.TestCase):
    def setUp(self):
        self.seed = 2021
        self.iter = 5

    def train(self, to_static):
        # prepare env
        paddle.seed(self.seed)

        net = Net()
        if to_static:
            net = paddle.jit.to_static(net)
        sgd = paddle.optimizer.SGD(0.01, parameters=net.parameters())

        for i in range(self.iter):
            x = paddle.rand([4, 10])
            out = net(x)
            loss = paddle.mean(out)

            loss.backward()
            sgd.minimize(loss)
            net.clear_gradients()

        return loss

    def test_stop_gradient(self):
        paddle.disable_static()

        dy_loss = self.train(to_static=False)
        st_loss = self.train(to_static=True)
        self.assertEqual(dy_loss[0], st_loss[0])

        paddle.enable_static()


516 517
if __name__ == "__main__":
    unittest.main()