slice_op_npu.cc 8.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */

#include "paddle/fluid/operators/slice_op.h"
16
#include "paddle/fluid/operators/npu_op_runner.h"
17 18 19 20 21

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
22
using NPUDeviceContext = platform::NPUDeviceContext;
23

24
void UpdateAttr(const framework::DDim& in_dims, const std::vector<int> axes,
25 26 27 28 29 30
                const std::vector<int> starts, const std::vector<int> ends,
                std::vector<int>* offsets, std::vector<int>* size) {
  int cnt = 0;
  for (int i = 0; i < in_dims.size(); ++i) {
    int start = 0;
    int end = in_dims[i];
31 32 33
    // NOTE(zhiqiu): Becareful that cnt may > axes.size() and result in
    // overflow.
    int axis = cnt < static_cast<int>(axes.size()) ? axes[cnt] : -1;
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
    if (axis == i) {
      start = starts[cnt];
      if (start < 0) {
        start = (start + in_dims[i]);
      }
      start = std::max(start, static_cast<int>(0));
      end = ends[cnt];
      if (end < 0) {
        end = (end + in_dims[i]);
      }
      end = std::min(end, static_cast<int>(in_dims[i]));
      cnt++;
    }

    (*offsets)[i] = start;
    (*size)[i] = end - start;
  }
}

53
template <typename T>
54 55 56 57 58 59
class SliceNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto* out = ctx.Output<Tensor>("Out");

60 61 62 63 64 65 66 67 68 69
    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");
    std::vector<int> axes(axes_int.begin(), axes_int.end());
    std::vector<int> starts(starts_int.begin(), starts_int.end());
    std::vector<int> ends(ends_int.begin(), ends_int.end());

    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");
    auto infer_flags = ctx.Attr<std::vector<int>>("infer_flags");

70
    const auto& in_dims = input->dims();
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    // Get the accurate attribute value of starts and ends
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int>(starts_tensor_list);
    }

    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int>(ends_tensor_list);
    }

    PADDLE_ENFORCE_EQ(
        starts.size(), axes.size(),
        platform::errors::InvalidArgument(
            "The size of starts must be equal to the size of axes."));
    PADDLE_ENFORCE_EQ(
        ends.size(), axes.size(),
        platform::errors::InvalidArgument(
            "The size of ends must be equal to the size of axes."));

    if (ctx.HasInput("StartsTensor") || ctx.HasInput("EndsTensor") ||
        starts_tensor_list.size() > 0 || ends_tensor_list.size() > 0) {
      // Infer output dims
      auto out_dims = out->dims();
      auto slice_dims = out_dims;
      for (size_t i = 0; i < axes.size(); ++i) {
        // when start == -1 && end == start+1
        if (starts[i] == -1 && ends[i] == 0 && infer_flags[i] == -1) {
          auto ret =
              std::find(decrease_axis.begin(), decrease_axis.end(), axes[i]);
          if (ret != decrease_axis.end()) {
            ends[i] = in_dims[axes[i]];
          }
        }
      }

      CheckAndUpdateSliceAttrs(in_dims, axes, &starts, &ends);
      slice_dims =
          GetSliceDims<int>(in_dims, axes, starts, ends, nullptr, nullptr);
      out_dims = GetDecreasedDims(slice_dims, decrease_axis);

      out->Resize(out_dims);
    }

120 121 122 123 124 125 126
    out->mutable_data<T>(ctx.GetPlace());

    std::vector<int> offsets(in_dims.size());
    std::vector<int> size(in_dims.size());

    UpdateAttr(in_dims, axes, starts, ends, &offsets, &size);

127
    auto stream = ctx.template device_context<NPUDeviceContext>().stream();
L
Leo Chen 已提交
128 129
    const auto& runner = NpuOpRunner("SliceD", {*input}, {*out},
                                     {{"offsets", offsets}, {"size", size}});
130 131 132 133
    runner.Run(stream);
  }
};

134
template <typename T>
135 136 137 138 139 140 141
class SliceGradNPUKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* input = ctx.Input<Tensor>("Input");
    auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
    auto* dinput = ctx.Output<Tensor>(framework::GradVarName("Input"));

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
    auto axes_int = ctx.Attr<std::vector<int>>("axes");
    auto starts_int = ctx.Attr<std::vector<int>>("starts");
    auto ends_int = ctx.Attr<std::vector<int>>("ends");
    std::vector<int> axes(axes_int.begin(), axes_int.end());
    std::vector<int> starts(starts_int.begin(), starts_int.end());
    std::vector<int> ends(ends_int.begin(), ends_int.end());

    // Get the accurate attribute value of starts and ends
    auto starts_tensor_list = ctx.MultiInput<Tensor>("StartsTensorList");
    if (ctx.HasInput("StartsTensor")) {
      starts = GetDataFromTensor<int>(ctx.Input<Tensor>("StartsTensor"));
    } else if (starts_tensor_list.size() > 0) {
      starts = GetDataFromTensorList<int>(starts_tensor_list);
    }

    auto ends_tensor_list = ctx.MultiInput<Tensor>("EndsTensorList");
    if (ctx.HasInput("EndsTensor")) {
      ends = GetDataFromTensor<int>(ctx.Input<Tensor>("EndsTensor"));
    } else if (ends_tensor_list.size() > 0) {
      ends = GetDataFromTensorList<int>(ends_tensor_list);
    }

164
    const auto& in_dims = input->dims();
165 166 167 168 169 170 171 172 173 174 175 176
    int rank = in_dims.size();

    std::vector<int> offsets(rank);
    std::vector<int> size(rank);
    UpdateAttr(in_dims, axes, starts, ends, &offsets, &size);

    std::vector<std::vector<int64_t>> paddings(rank, std::vector<int64_t>(2));
    for (int i = 0; i < rank; ++i) {
      paddings[i][0] = static_cast<int64_t>(offsets[i]);
      paddings[i][1] = static_cast<int64_t>(in_dims[i] - size[i] - offsets[i]);
    }

A
Aganlengzi 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    Tensor tmp_dout;
    tmp_dout.ShareDataWith(*dout);
    auto out_dims = dout->dims();
    auto decrease_axis = ctx.Attr<std::vector<int>>("decrease_axis");
    auto decrease_size = decrease_axis.size();
    if (decrease_size > 0) {
      if (decrease_size == static_cast<size_t>(in_dims.size())) {
        out_dims = framework::make_ddim(std::vector<int>(decrease_size, 1));
      } else {
        std::vector<int> origin_out_shape(out_dims.size() + decrease_size, -1);
        for (size_t i = 0; i < decrease_size; ++i) {
          origin_out_shape[decrease_axis[i]] = 1;
        }
        int index = 0;
        for (size_t i = 0; i < origin_out_shape.size(); ++i) {
          if (origin_out_shape[i] == -1) {
            origin_out_shape[i] = out_dims[index];
            ++index;
          }
        }
        out_dims = framework::make_ddim(origin_out_shape);
      }
      tmp_dout.Resize(out_dims);
    }

202 203 204 205
    dinput->mutable_data<T>(ctx.GetPlace());
    auto stream =
        ctx.template device_context<paddle::platform::NPUDeviceContext>()
            .stream();
L
Leo Chen 已提交
206
    const auto& runner =
A
Aganlengzi 已提交
207
        NpuOpRunner("PadD", {tmp_dout}, {*dinput}, {{"paddings", paddings}});
208 209 210 211 212 213 214 215 216
    runner.Run(stream);
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

217 218 219 220 221 222 223 224 225 226
REGISTER_OP_NPU_KERNEL(slice, ops::SliceNPUKernel<float>,
                       ops::SliceNPUKernel<int>,
#ifdef PADDLE_WITH_ASCEND_INT64
                       ops::SliceNPUKernel<int64_t>,
#endif
                       ops::SliceNPUKernel<paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(slice_grad, ops::SliceGradNPUKernel<float>,
                       ops::SliceGradNPUKernel<int>,
                       ops::SliceGradNPUKernel<paddle::platform::float16>);