pybind.cc 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Y
Yu Yang 已提交
19 20 21 22 23 24 25 26 27
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
#include "paddle/pybind/tensor_bind.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

28 29 30
namespace py = pybind11;
namespace pd = paddle::framework;

Y
Yu Yang 已提交
31
USE_OP(add_two);
Q
Qiao Longfei 已提交
32
USE_OP(onehot_cross_entropy);
Y
Yu Yang 已提交
33
USE_OP_WITHOUT_KERNEL(fc);
Q
Qiao Longfei 已提交
34
USE_OP(sgd);
Q
qijun 已提交
35 36 37 38
USE_OP(mul);
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
F
fengjiayi 已提交
39
USE_OP(fill_zeros_like);
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41 42 43 44 45 46 47 48 49 50
template <typename ClassType>
void ExposeOperator(ClassType& m) {
  m.def("infer_shape", &ClassType::type::InferShape)
      .def("run", &ClassType::type::Run)
      .def("outputs",
           [](const typename ClassType::type& op) -> std::vector<std::string> {
             return op.outputs_;
           })
      .def("__str__", &ClassType::type::DebugString);
}
Y
Yu Yang 已提交
51

52 53 54 55 56
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

57
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
58
  py::module m("core", "C++ core of PaddlePaddle");
59

Y
Yu Yang 已提交
60 61
  py::class_<pd::Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer([](pd::Tensor& self) -> py::buffer_info {
62
        return paddle::pybind::CastToPyBuffer(self);
Y
Yu Yang 已提交
63 64 65 66 67
      })
      .def("get_dims",
           [](const pd::Tensor& self) { return pd::vectorize(self.dims()); })
      .def("set_dims",
           [](pd::Tensor& self, const std::vector<int>& dim) {
F
fengjiayi 已提交
68
             self.Resize(pd::make_ddim(dim));
Y
Yu Yang 已提交
69 70 71 72 73 74 75 76 77
           })
      .def("alloc_float",
           [](pd::Tensor& self) {
             self.mutable_data<float>(paddle::platform::CPUPlace());
           })
      .def("alloc_int",
           [](pd::Tensor& self) {
             self.mutable_data<int>(paddle::platform::CPUPlace());
           })
78
      .def("set", paddle::pybind::PyTensorSetFromArray<float>)
Y
Yu Yang 已提交
79 80 81
      .def("set", paddle::pybind::PyTensorSetFromArray<int>)
      .def("shape",
           [](pd::Tensor& self) { return pd::vectorize(self.dims()); });
Y
Yu Yang 已提交
82

83 84 85 86 87 88 89 90 91 92
  py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class.

All parameter, weight, gradient are variables in Paddle.
)DOC")
      .def("is_int", [](const pd::Variable& var) { return var.IsType<int>(); })
      .def("set_int",
           [](pd::Variable& var, int val) -> void {
             *var.GetMutable<int>() = val;
           })
      .def("get_int",
Y
Yu Yang 已提交
93 94 95 96 97 98
           [](const pd::Variable& var) -> int { return var.Get<int>(); })
      .def("get_tensor",
           [](pd::Variable& self) -> pd::Tensor* {
             return self.GetMutable<pd::Tensor>();
           },
           py::return_value_policy::reference);
99 100 101 102 103 104 105 106

  py::class_<pd::Scope, std::shared_ptr<pd::Scope>>(m, "Scope")
      .def(py::init<const std::shared_ptr<pd::Scope>&>())
      .def("get_var",
           &pd::Scope::GetVariable,
           py::return_value_policy::reference)
      .def("create_var",
           &pd::Scope::CreateVariable,
107 108
           py::return_value_policy::reference)
      .def("get_var_name", &pd::Scope::GetVariableName);
109

Y
Yu Yang 已提交
110 111
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
112
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
Y
Yu Yang 已提交
113
    auto& protos = pd::OpRegistry::protos();
Y
Yu Yang 已提交
114
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
115
    for (auto it = protos.begin(); it != protos.end(); ++it) {
Y
Yu Yang 已提交
116 117
      PADDLE_ENFORCE(it->second.IsInitialized(),
                     "OpProto must all be initialized");
Y
Yu Yang 已提交
118 119
      std::string str;
      PADDLE_ENFORCE(it->second.SerializeToString(&str),
Y
Yu Yang 已提交
120
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
121
      ret_values.push_back(py::bytes(str));
Y
Yu Yang 已提交
122 123 124
    }
    return ret_values;
  });
125 126 127 128 129 130
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
      .def("empty", pd::OperatorBase::EMPTY_VAR_NAME)
      .def("temp", pd::OperatorBase::TMP_VAR_NAME);

Y
Yu Yang 已提交
131 132 133 134 135
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
      .def_static("cpu_context", []() -> paddle::platform::DeviceContext* {
        return new paddle::platform::CPUDeviceContext();
      });

Y
Yu Yang 已提交
136 137
  py::class_<pd::OperatorBase, std::shared_ptr<pd::OperatorBase>> operator_base(
      m, "Operator");
Y
Yu Yang 已提交
138

Y
Yu Yang 已提交
139
  operator_base.def_static("create", [](py::bytes protobin) {
Y
Yu Yang 已提交
140 141 142 143 144 145 146 147 148 149
    pd::OpDesc desc;
    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                   "Cannot parse user input to OpDesc");
    PADDLE_ENFORCE(desc.IsInitialized(),
                   "User OpDesc is not initialized, reason %s",
                   desc.InitializationErrorString());
    return pd::OpRegistry::CreateOp(desc);
  });
  ExposeOperator(operator_base);

Y
Yu Yang 已提交
150
  py::class_<pd::NetOp, std::shared_ptr<pd::NetOp>> net(m, "Net");
Y
Yu Yang 已提交
151 152

  net.def_static("create",
Y
Yu Yang 已提交
153 154
                 []() -> std::shared_ptr<pd::NetOp> {
                   auto retv = std::make_shared<pd::NetOp>();
Y
Yu Yang 已提交
155
                   retv->type_ = "plain_net";
Y
Yu Yang 已提交
156 157
                   return retv;
                 })
Y
Yu Yang 已提交
158
      .def("add_op", &pd::NetOp::AddOp)
Y
Yu Yang 已提交
159
      .def("add_op",
Y
Yu Yang 已提交
160 161
           [](pd::NetOp& self, const std::shared_ptr<pd::NetOp>& net) -> void {
             self.AddOp(std::static_pointer_cast<pd::OperatorBase>(net));
Y
Yu Yang 已提交
162
           })
Y
Yu Yang 已提交
163 164 165
      .def("complete_add_op", &pd::NetOp::CompleteAddOp)
      .def("complete_add_op",
           [](std::shared_ptr<pd::NetOp>& self) { self->CompleteAddOp(); });
Y
Yu Yang 已提交
166
  ExposeOperator(net);
Y
Yu Yang 已提交
167

168 169
  m.def("unique_integer", UniqueIntegerGenerator);

170
  return m.ptr();
L
Luo Tao 已提交
171
}