flatten_op.h 6.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/math_function.h"
#include "paddle/fluid/operators/math/pooling.h"
#include "paddle/fluid/platform/device_context.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class FlattenKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *in = context.Input<framework::LoDTensor>("X");
    auto *out = context.Output<framework::LoDTensor>("Out");

    auto &axes = context.Attr<int>("axis");
    auto x_dims = in->dims();
    auto out_dims = framework::make_ddim(GetOutputShape(axes, x_dims));

    out->mutable_data(context.GetPlace(), in->type());
    framework::TensorCopy(
        *in, context.GetPlace(),
        context.template device_context<platform::DeviceContext>(), out);
    out->Resize(out_dims);
  }

  static std::vector<int32_t> GetOutputShape(const int axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1, inner = 1;
    for (int i = 0; i < in_dims.size(); ++i) {
      if (i < axis) {
        outer *= in_dims[i];
      } else {
        inner *= in_dims[i];
      }
    }
    std::vector<int32_t> out_shape(2);
    out_shape[0] = outer;
    out_shape[1] = inner;
    return out_shape;
  }
};

template <typename DeviceContext, typename T>
class FlattenGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto *d_out =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
    auto in_dims = ctx.Input<framework::LoDTensor>("X")->dims();

    d_x->mutable_data(ctx.GetPlace(), d_out->type());
71 72 73
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), d_x);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
    d_x->Resize(in_dims);
  }
};

template <typename DeviceContext, typename T>
class Flatten2Kernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto &axes = context.Attr<int>("axis");

    auto *in = context.Input<framework::LoDTensor>("X");
    auto x_dims = in->dims();

    auto *out = context.Output<framework::LoDTensor>("Out");

    auto out_dims = framework::make_ddim(
        FlattenKernel<DeviceContext, T>::GetOutputShape(axes, x_dims));

    out->mutable_data(context.GetPlace(), in->type());
    framework::TensorCopy(
        *in, context.GetPlace(),
        context.template device_context<platform::DeviceContext>(), out);
    out->Resize(out_dims);
  }
};

template <typename DeviceContext, typename T>
class Flatten2GradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto *d_out =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));

    auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());

    d_x->mutable_data(ctx.GetPlace(), d_out->type());
112 113 114
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), d_x);
115 116 117 118
    d_x->Resize(x_dims);
  }
};

119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
template <typename DeviceContext, typename T>
class FlattenContiguousRangeKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto &start_axis = context.Attr<int>("start_axis");
    auto &stop_axis = context.Attr<int>("stop_axis");

    auto *in = context.Input<framework::LoDTensor>("X");
    auto x_dims = in->dims();
    int in_dims_size = x_dims.size();
    int real_start_axis = start_axis, real_stop_axis = stop_axis;
    if (start_axis < 0) {
      real_start_axis = start_axis + in_dims_size;
    }
    if (stop_axis < 0) {
      real_stop_axis = stop_axis + in_dims_size;
    }
    auto *out = context.Output<framework::LoDTensor>("Out");

    auto out_dims = framework::make_ddim(
        GetOutputShape(real_start_axis, real_stop_axis, x_dims));

    out->mutable_data(context.GetPlace(), in->type());
    framework::TensorCopy(
        *in, context.GetPlace(),
        context.template device_context<platform::DeviceContext>(), out);
    out->Resize(out_dims);
  }
  static std::vector<int32_t> GetOutputShape(const int start_axis,
                                             const int stop_axis,
                                             const framework::DDim &in_dims) {
    int64_t outer = 1;
    std::vector<int32_t> out_shape;
    int in_dims_size = in_dims.size();
    out_shape.reserve(in_dims_size - stop_axis + start_axis);

    for (int i = 0; i < start_axis; ++i) {
      out_shape.push_back(in_dims[i]);
    }
    for (int i = start_axis; i <= stop_axis; i++) {
      outer *= in_dims[i];
    }
    out_shape.push_back(outer);
    for (int i = stop_axis + 1; i < in_dims_size; i++) {
      out_shape.push_back(in_dims[i]);
    }

    return out_shape;
  }
};

template <typename DeviceContext, typename T>
class FlattenContiguousRangeGradKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &ctx) const override {
    auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
    auto *d_out =
        ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));

    auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
    auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());

    d_x->mutable_data(ctx.GetPlace(), d_out->type());
182 183 184
    framework::TensorCopy(
        *d_out, ctx.GetPlace(),
        ctx.template device_context<platform::DeviceContext>(), d_x);
185 186 187 188
    d_x->Resize(x_dims);
  }
};

189 190
}  // namespace operators
}  // namespace paddle