interpolate_v2_op.cc 30.3 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at
   http://www.apache.org/licenses/LICENSE-2.0
   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include <memory>
#include <string>
#include <vector>
15 16

#include "paddle/fluid/framework/infershape_utils.h"
X
xiaoting 已提交
17
#include "paddle/fluid/framework/op_registry.h"
18 19 20
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/multiary.h"

21 22 23
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
X
xiaoting 已提交
24 25 26 27

namespace paddle {
namespace operators {

28
using DataLayout = phi::DataLayout;
X
xiaoting 已提交
29 30 31 32 33

static void Interpolate1DInferShapeCheck(framework::InferShapeContext* ctx) {
  auto dim_x = ctx->GetInputDim("X");
  auto interp_method = ctx->Attrs().Get<std::string>("interp_method");

34 35
  PADDLE_ENFORCE_EQ("linear",
                    interp_method,
X
xiaoting 已提交
36 37 38 39
                    platform::errors::InvalidArgument(
                        "Interpolation method can only be \"linear\" when"
                        "Input(X) dimension is 3, but got method = %s .",
                        interp_method));
40 41
  const DataLayout data_layout =
      phi::StringToDataLayout(ctx->Attrs().Get<std::string>("data_layout"));
42
  for (int i = 0; i < dim_x.size(); ++i) {
43 44
    PADDLE_ENFORCE_NE(dim_x[i],
                      0,
45 46 47
                      platform::errors::InvalidArgument(
                          "The shape of input(x) should be larged "
                          "than 0, bug received shape[%d] is %d ",
48 49
                          i,
                          dim_x[i]));
50
  }
X
xiaoting 已提交
51 52 53 54
  if (ctx->HasInputs("SizeTensor")) {
    // top prority size
    auto inputs_name = ctx->Inputs("SizeTensor");
    PADDLE_ENFORCE_EQ(
55 56
        inputs_name.size(),
        1,
X
xiaoting 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
        platform::errors::InvalidArgument(
            "Input(SizeTensor)'size of Op(interpolate) must be 1. "
            "Attr(out_shape)'s length must be 1 for 3-D input tensor, but got "
            "size = %d .",
            inputs_name.size()));
    int out_w = ctx->Attrs().Get<int>("out_w");
    framework::DDim dim_out;
    if (data_layout == DataLayout::kNCHW) {
      dim_out = {dim_x[0], dim_x[1], out_w};
    } else {
      dim_out = {dim_x[0], out_w, dim_x[2]};
    }
    ctx->SetOutputDim("Out", dim_out);

    return;
  }

  int out_w;
  if (ctx->HasInput("Scale")) {
    auto scale_tensor = ctx->GetInputDim("Scale");
    PADDLE_ENFORCE_EQ(
78 79
        scale_tensor.size(),
        1,
X
xiaoting 已提交
80 81 82 83
        platform::errors::InvalidArgument(
            "Scale's dimension size must be 1, but got dimension = %d .",
            scale_tensor.size()));
    PADDLE_ENFORCE_EQ(
84 85
        scale_tensor[0],
        1,
X
xiaoting 已提交
86 87
        platform::errors::InvalidArgument(
            "Scale's shape must be 1, but got shape = %d .", scale_tensor[0]));
88
    out_w = -1;
X
xiaoting 已提交
89 90 91 92 93
  } else {
    auto scale = ctx->Attrs().Get<std::vector<float>>("scale");
    if (scale.size() > 0) {
      float scale_w = -1;
      scale_w = scale[0];
K
Kqnonrime 已提交
94
      PADDLE_ENFORCE_EQ(
95 96
          scale_w > 0,
          true,
K
Kqnonrime 已提交
97 98 99 100
          platform::errors::InvalidArgument(
              "The scale_w in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_w));
X
xiaoting 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
      if (scale_w > 0.) {
        // round down
        out_w = (data_layout == DataLayout::kNCHW
                     ? static_cast<int>(dim_x[2] * scale_w)
                     : static_cast<int>(dim_x[1] * scale_w));
        // protect when input shape is -1
        out_w = out_w > 0 ? out_w : -1;
      }
    } else {
      out_w = ctx->Attrs().Get<int>("out_w");
    }
  }

  if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
    auto out_size_dim = ctx->GetInputDim("OutSize");
    PADDLE_ENFORCE_EQ(
117 118
        out_size_dim.size(),
        1,
X
xiaoting 已提交
119 120 121
        platform::errors::InvalidArgument(
            "OutSize's dimension size must be 1, but got dimention = %d .",
            out_size_dim.size()));
K
Kqnonrime 已提交
122
    PADDLE_ENFORCE_EQ(
123 124
        out_size_dim[0],
        1,
K
Kqnonrime 已提交
125 126 127
        platform::errors::InvalidArgument(
            "OutSize's 0-th dimension's value must be 1, but got value = %d .",
            out_size_dim[0]));
X
xiaoting 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    ctx->ShareLoD("X", "Out");
    return;
  }

  framework::DDim dim_out;
  if (data_layout == DataLayout::kNCHW) {
    dim_out = {dim_x[0], dim_x[1], out_w};
  } else {
    dim_out = {dim_x[0], out_w, dim_x[2]};
  }
  ctx->SetOutputDim("Out", dim_out);
}

static void Interpolate2DInferShapeCheck(framework::InferShapeContext* ctx) {
  auto dim_x = ctx->GetInputDim("X");
  auto interp_method = ctx->Attrs().Get<std::string>("interp_method");

  PADDLE_ENFORCE(
      "bilinear" == interp_method || "nearest" == interp_method ||
          "bicubic" == interp_method,
148 149 150 151
      platform::errors::InvalidArgument(
          "Interpolation method can only be \"bilinear\" or \"nearest\" when "
          "Input(X) dimension is 4, but got method = %s.",
          interp_method));
152 153
  const DataLayout data_layout =
      phi::StringToDataLayout(ctx->Attrs().Get<std::string>("data_layout"));
X
xiaoting 已提交
154

155
  for (int i = 0; i < dim_x.size(); ++i) {
156 157
    PADDLE_ENFORCE_NE(dim_x[i],
                      0,
158 159 160
                      platform::errors::InvalidArgument(
                          "The shape of input(x) should be larged "
                          "than 0, bug received shape[%d] is %d ",
161 162
                          i,
                          dim_x[i]));
163 164
  }

X
xiaoting 已提交
165 166 167 168
  if (ctx->HasInputs("SizeTensor")) {
    // top prority size
    auto inputs_name = ctx->Inputs("SizeTensor");
    PADDLE_ENFORCE_EQ(
169 170
        inputs_name.size(),
        2,
X
xiaoting 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
        platform::errors::InvalidArgument(
            "Input(SizeTensor)'size of Op(interpolate) must be 2. "
            "Attr(out_shape)'s length must be 2 for 4-D input "
            "tensor, but got size = %d .",
            inputs_name.size()));
    int out_h = ctx->Attrs().Get<int>("out_h");
    int out_w = ctx->Attrs().Get<int>("out_w");
    framework::DDim dim_out;
    if (data_layout == DataLayout::kNCHW) {
      dim_out = {dim_x[0], dim_x[1], out_h, out_w};
    } else {
      dim_out = {dim_x[0], out_h, out_w, dim_x[3]};
    }
    ctx->SetOutputDim("Out", dim_out);

    return;
  }

  int out_h, out_w;
  if (ctx->HasInput("Scale")) {
    auto scale_tensor = ctx->GetInputDim("Scale");
    PADDLE_ENFORCE_EQ(
193 194
        scale_tensor.size(),
        1,
X
xiaoting 已提交
195 196 197
        platform::errors::InvalidArgument(
            "Scale's dimension size must be 1, but got dimension = %d .",
            scale_tensor.size()));
198 199
    PADDLE_ENFORCE_EQ(scale_tensor[0] == 2 || scale_tensor[0] == 1,
                      true,
X
xiaoting 已提交
200 201 202
                      platform::errors::InvalidArgument(
                          "Scale's shape must be 2 or 1, but got shape = %d .",
                          scale_tensor[0]));
203 204
    out_h = -1;
    out_w = -1;
X
xiaoting 已提交
205 206 207 208 209 210 211 212
  } else {
    auto scale = ctx->Attrs().Get<std::vector<float>>("scale");
    if (scale.size() > 0) {
      float scale_h = -1;
      float scale_w = -1;
      scale_h = scale[0];
      scale_w = scale[1];
      PADDLE_ENFORCE_EQ(
213 214
          scale_w > 0,
          true,
K
Kqnonrime 已提交
215 216 217 218 219
          platform::errors::InvalidArgument(
              "The scale_w in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_w));
      PADDLE_ENFORCE_EQ(
220 221
          scale_h > 0,
          true,
K
Kqnonrime 已提交
222 223 224 225
          platform::errors::InvalidArgument(
              "The scale_h in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_h));
X
xiaoting 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
      if (scale_h > 0. && scale_w > 0.) {
        // round down
        out_h = (data_layout == DataLayout::kNCHW
                     ? static_cast<int>(dim_x[2] * scale_h)
                     : static_cast<int>(dim_x[1] * scale_h));
        out_w = (data_layout == DataLayout::kNCHW
                     ? static_cast<int>(dim_x[3] * scale_w)
                     : static_cast<int>(dim_x[2] * scale_w));
        // protect when input shape is -1
        out_h = out_h > 0 ? out_h : -1;
        out_w = out_w > 0 ? out_w : -1;
      }
    } else {
      out_h = ctx->Attrs().Get<int>("out_h");
      out_w = ctx->Attrs().Get<int>("out_w");
    }
  }

  if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
    auto out_size_dim = ctx->GetInputDim("OutSize");
    PADDLE_ENFORCE_EQ(
247 248
        out_size_dim.size(),
        1,
X
xiaoting 已提交
249 250 251 252
        platform::errors::InvalidArgument(
            "OutSize's dimension size must be 1, but got dimension = %d .",
            out_size_dim.size()));
    PADDLE_ENFORCE_EQ(
253 254
        out_size_dim[0],
        2,
X
xiaoting 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
        platform::errors::InvalidArgument(
            "OutSize's dim[0] must be 2, but got dimention = %d .",
            out_size_dim[0]));
    ctx->ShareLoD("X", "Out");
    return;
  }

  framework::DDim dim_out;
  if (data_layout == DataLayout::kNCHW) {
    dim_out = {dim_x[0], dim_x[1], out_h, out_w};
  } else {
    dim_out = {dim_x[0], out_h, out_w, dim_x[3]};
  }
  ctx->SetOutputDim("Out", dim_out);
}

static void Interpolate3DInferShapeCheck(framework::InferShapeContext* ctx) {
  auto dim_x = ctx->GetInputDim("X");
  auto interp_method = ctx->Attrs().Get<std::string>("interp_method");

275 276 277 278 279 280
  PADDLE_ENFORCE("nearest" == interp_method || "trilinear" == interp_method,
                 platform::errors::InvalidArgument(
                     "Interpolation method can only be \"trilinear\" or "
                     "\"nearest\" when Input(X) "
                     "dimension is 5, but got method = %s .",
                     interp_method));
281 282
  const DataLayout data_layout =
      phi::StringToDataLayout(ctx->Attrs().Get<std::string>("data_layout"));
X
xiaoting 已提交
283

284
  for (int i = 0; i < dim_x.size(); ++i) {
285 286
    PADDLE_ENFORCE_NE(dim_x[i],
                      0,
287 288 289
                      platform::errors::InvalidArgument(
                          "The shape of input(x) should be larged "
                          "than 0, bug received shape[%d] is %d ",
290 291
                          i,
                          dim_x[i]));
292 293
  }

X
xiaoting 已提交
294 295 296 297
  if (ctx->HasInputs("SizeTensor")) {
    // top prority size
    auto inputs_name = ctx->Inputs("SizeTensor");
    PADDLE_ENFORCE_EQ(
298 299
        inputs_name.size(),
        3,
X
xiaoting 已提交
300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
        platform::errors::InvalidArgument(
            "Input(SizeTensor)'s size of Op(interpolate) must be 3. "
            "Attr(out_shape)'s length must be 3 for 5-D input "
            "tensor, but got size = %d .",
            inputs_name.size()));
    int out_d = ctx->Attrs().Get<int>("out_d");
    int out_h = ctx->Attrs().Get<int>("out_h");
    int out_w = ctx->Attrs().Get<int>("out_w");
    framework::DDim dim_out;
    if (data_layout == DataLayout::kNCHW) {
      dim_out = {dim_x[0], dim_x[1], out_d, out_h, out_w};
    } else {
      dim_out = {dim_x[0], out_d, out_h, out_w, dim_x[4]};
    }
    ctx->SetOutputDim("Out", dim_out);

    return;
  }

  int out_d, out_h, out_w;
  if (ctx->HasInput("Scale")) {
    auto scale_tensor = ctx->GetInputDim("Scale");
    PADDLE_ENFORCE_EQ(
323 324
        scale_tensor.size(),
        1,
X
xiaoting 已提交
325 326 327
        platform::errors::InvalidArgument(
            "Scale's dimension size must be 1, but got size = %d .",
            scale_tensor.size()));
328 329
    PADDLE_ENFORCE_EQ(scale_tensor[0] == 3 || scale_tensor[0] == 1,
                      true,
X
xiaoting 已提交
330 331 332
                      platform::errors::InvalidArgument(
                          "Scale's shape must be 3 or 1, but got shape = %d .",
                          scale_tensor[0]));
333 334 335
    out_d = -1;
    out_h = -1;
    out_w = -1;
X
xiaoting 已提交
336 337 338 339 340 341 342 343 344 345
  } else {
    auto scale = ctx->Attrs().Get<std::vector<float>>("scale");
    if (scale.size() > 0) {
      float scale_d = -1;
      float scale_h = -1;
      float scale_w = -1;
      scale_d = scale[0];
      scale_h = scale[1];
      scale_w = scale[2];
      PADDLE_ENFORCE_EQ(
346 347
          scale_w > 0,
          true,
K
Kqnonrime 已提交
348 349 350 351 352
          platform::errors::InvalidArgument(
              "The scale_w in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_w));
      PADDLE_ENFORCE_EQ(
353 354
          scale_h > 0,
          true,
K
Kqnonrime 已提交
355 356 357 358 359
          platform::errors::InvalidArgument(
              "The scale_h in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_h));
      PADDLE_ENFORCE_EQ(
360 361
          scale_d > 0,
          true,
K
Kqnonrime 已提交
362 363 364 365
          platform::errors::InvalidArgument(
              "The scale_d in Attr(scale) of Operator(interpolate) "
              "should be greater than 0, but received value is %d.",
              scale_d));
X
xiaoting 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390
      if (scale_d > 0. && scale_h > 0. && scale_w > 0.) {
        // round down
        out_d = (data_layout == DataLayout::kNCHW
                     ? static_cast<int>(dim_x[2] * scale_d)
                     : static_cast<int>(dim_x[1] * scale_d));
        out_h = (data_layout == DataLayout::kNCHW
                     ? static_cast<int>(dim_x[3] * scale_h)
                     : static_cast<int>(dim_x[2] * scale_h));
        out_w = (data_layout == DataLayout::kNCHW
                     ? static_cast<int>(dim_x[4] * scale_w)
                     : static_cast<int>(dim_x[3] * scale_w));
        // protect when input shape is -1
        out_d = out_d > 0 ? out_d : -1;
        out_h = out_h > 0 ? out_h : -1;
        out_w = out_w > 0 ? out_w : -1;
      }
    } else {
      out_d = ctx->Attrs().Get<int>("out_d");
      out_h = ctx->Attrs().Get<int>("out_h");
      out_w = ctx->Attrs().Get<int>("out_w");
    }
  }

  if (ctx->HasInput("OutSize") && ctx->IsRuntime()) {
    auto out_size_dim = ctx->GetInputDim("OutSize");
391
    PADDLE_ENFORCE_EQ(
392 393
        out_size_dim.size(),
        1,
394 395 396
        platform::errors::InvalidArgument(
            "OutSize's dimension size must be 1, but got size is %d.",
            out_size_dim.size()));
397 398
    PADDLE_ENFORCE_EQ(out_size_dim[0],
                      3,
399 400 401
                      platform::errors::InvalidArgument(
                          "OutSize's dim[0] must be 3, but got size is %d.",
                          out_size_dim[0]));
X
xiaoting 已提交
402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
    ctx->ShareLoD("X", "Out");
    return;
  }

  framework::DDim dim_out;
  if (data_layout == DataLayout::kNCHW) {
    dim_out = {dim_x[0], dim_x[1], out_d, out_h, out_w};
  } else {
    dim_out = {dim_x[0], out_d, out_h, out_w, dim_x[4]};
  }
  ctx->SetOutputDim("Out", dim_out);
}

class InterpolateV2Op : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
421 422
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Interpolate");
    OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Interpolate");
X
xiaoting 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445

    auto dim_x = ctx->GetInputDim("X");  // NCHW format
    PADDLE_ENFORCE(
        dim_x.size() == 3 || dim_x.size() == 4 || dim_x.size() == 5,
        platform::errors::Unimplemented(
            "Input(X) dimension must be 3, 4 or 5, but got dimension = %d .",
            dim_x.size()));

    if (dim_x.size() == 3) {
      // shape check for 1D interpolate for input tensor shape NCHW
      Interpolate1DInferShapeCheck(ctx);
    } else if (dim_x.size() == 4) {
      // shape check for 2D interpolate for input tensor shape NCHW
      Interpolate2DInferShapeCheck(ctx);
    } else {  // dim_x.size() == 5
      // shape check for 3D interpolate for input tensor shape NCDHW
      Interpolate3DInferShapeCheck(ctx);
    }
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
446
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
J
jiahongyu 已提交
447
    return framework::OpKernelType(data_type, ctx.GetPlace());
X
xiaoting 已提交
448 449 450
  }

  framework::OpKernelType GetKernelTypeForVar(
451
      const std::string& var_name,
452
      const phi::DenseTensor& tensor,
X
xiaoting 已提交
453
      const framework::OpKernelType& expected_kernel_type) const override {
454
#ifdef PADDLE_WITH_MKLDNN
455 456
    if ((expected_kernel_type.data_layout_ == phi::DataLayout::ONEDNN) &&
        (tensor.layout() != phi::DataLayout::ONEDNN)) {
457 458 459
      auto attrs = Attrs();
      auto ar = paddle::framework::AttrReader(attrs);
      const std::string data_format = ar.Get<std::string>("data_layout");
460
      auto dl = phi::StringToDataLayout(data_format);
461 462
      // Some models may have intentionally set "AnyLayout" for pool
      // op. Treat this as NCHW (default data_format value)
463
      if (dl != phi::DataLayout::kAnyLayout) {
464 465
        return framework::OpKernelType(
            expected_kernel_type.data_type_, tensor.place(), dl);
466 467 468
      }
    }
#endif
X
xiaoting 已提交
469 470 471
    if (var_name == "SizeTensor" || var_name == "Scale") {
      return expected_kernel_type;
    }
472 473
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
X
xiaoting 已提交
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541
  }
};

class InterpolateV2OpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "The input tensor of interpolate operator, "
             "This is a 4-D tensor with shape of [N, C, H, W] or a "
             "5-D tensor with shape of [N, C, D, H, W].");
    AddInput("OutSize",
             "This is a 1-D tensor with two numbers to specify output size. "
             "It should be [output_height, output_width] when input is a 4-D "
             "tensor and should be [output_depth, output_height, output_width] "
             "when input is a 5-D tensor. It has a higher priority than "
             "the attr(out_d), attr(out_h), attr(out_w) and attr(scale).")
        .AsDispensable();
    AddInput("SizeTensor",
             "(vector<Tensor<int32>>, optional). If provided, interpolate will "
             "use this. The shape of the tensor in vector MUST BE [1]. "
             "It has the highest priority compare with Input(OutSize) and "
             "attr(out_d), attr(out_h), attr(out_w) and attr(scale).")
        .AsDuplicable()
        .AsDispensable();
    AddInput("Scale",
             "This is a 1-D tensor with one number to specify output scale. "
             "It has the higher priority compare with attr(scale).")
        .AsDispensable();
    AddOutput("Out",
              "The output tensor of interpolate operator, "
              "This is a tensor in same rank with Input(X).");

    AddAttr<std::string>(
        "data_layout",
        "(string, default NCHW) Only used in "
        "an optional string from: \"NHWC\", \"NCHW\". "
        "Specify that the data format of the input and output data is "
        "channel_first or channel_last.")
        .SetDefault("NCHW");
    AddAttr<int>("out_d", "output depth of interpolate op.").SetDefault(0);
    AddAttr<int>("out_h", "output height of interpolate op.").SetDefault(0);
    AddAttr<int>("out_w", "output width of interpolate op.").SetDefault(0);
    AddAttr<std::vector<float>>("scale", "scale_d factor of interpolate op.")
        .SetDefault(std::vector<float>{});
    AddAttr<std::string>("interp_method",
                         "(string, default \"bilinear\"), interpolation "
                         "method, can be \"linear\" for linear interpolation"
                         ",\"bilinear\" for "
                         "bilinear interpolation, \"trilinear\" for trilinear "
                         "interpolation and \"nearest\" for nearest "
                         "neighbor interpolation, and \"bicubic\" for bicubic"
                         "interpolation.")
        .SetDefault("bilinear");
    AddAttr<bool>(
        "align_corners",
        "an optional bool. Defaults to True. "
        "If True, the centers of 4 corner pixels of the input and output "
        "tensors are aligned, preserving the values at the corner pixels, "
        "If False, are not aligned")
        .SetDefault(true);
    AddAttr<int>("align_mode",
                 "(int, default \'1\'), optional for bilinear interpolation, "
                 "can be \'0\' for src_idx = scale*(dst_indx+0.5)-0.5 , "
                 "can be \'1\' for src_idx = scale*dst_index .")
        .SetDefault(1);
    AddComment(R"DOC(
          This operator samples input X to given output shape by using specified
          interpolation method, the interpolation methods can be \"nearest\"
542
          for nearest neighbor interpolation and \"bilinear\" for bilinear
X
xiaoting 已提交
543 544 545
          interpolation and \"linear\" for linear interpolation..

          Nearest neighbor interpolation is to perform nearest neighbor interpolation
546
          in both the 3rd dimension(in height direction) and the 4th dimension(in width
X
xiaoting 已提交
547
          direction) on input tensor.
548 549 550 551 552 553 554 555

          Linear interpolation is the method of using a line connecting two known quantities
          to determine the value of an unknown quantity between the two known quantities.

          Bilinear interpolation is an extension of linear interpolation for
          interpolating functions of two variables (e.g. H-direction and
          W-direction in this op) on a rectilinear 2D grid. The key idea is
          to perform linear interpolation first in one direction, and then
X
xiaoting 已提交
556 557
          again in the other direction.

558 559 560
          Trilinear interpolation is an extension of linear interpolation for
          interpolating functions of three variables (e.g. D-direction,
          H-direction and W-direction in this op) on a rectilinear 3D grid.
X
xiaoting 已提交
561 562 563 564 565 566 567
          The linear interpolation is performed on three directions.

          Bicubic interpolation is an extension of cubic interpolation for interpolating
          data points on a two-dimensional regular grid. The interpolated surface is
          smoother than corresponding surfaces obtained by bilinear interpolation or
          nearest-neighbor interpolation.

568
          Align_corners and align_mode are optional parameters,the calculation method
X
xiaoting 已提交
569
          of interpolation can be selected by them.
570

X
xiaoting 已提交
571 572 573
          Example:

          For scale:
574

X
xiaoting 已提交
575 576 577
            if align_corners = True and out_{size}>1 :

              scale_{factor} = (in_{size}-1.0)/(out_{size}-1.0)
578

X
xiaoting 已提交
579
            else:
580

X
xiaoting 已提交
581
              scale_{factor} = float(in_{size}/out_{size})
582 583


X
xiaoting 已提交
584
          Nearest neighbor interpolation:
585

X
xiaoting 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
          if:
              align_corners = False

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = \left \lfloor {H_{in} * scale_{}factor}} \right \rfloor
              W_out = \left \lfloor {W_{in} * scale_{}factor}} \right \rfloor

          else:
              align_corners = True

              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = round(H_{in} * scale_{factor})
              W_out = round(W_{in} * scale_{factor})

          Bilinear interpolation:

          if:
              align_corners = False , align_mode = 0
608

X
xiaoting 已提交
609 610
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
611

X
xiaoting 已提交
612 613 614 615 616
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
617

X
xiaoting 已提交
618 619 620 621 622 623 624 625 626 627
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:

              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

          Trilinear interpolation:

          if:
              align_corners = False , align_mode = 0
628

X
xiaoting 已提交
629 630
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:
631

X
xiaoting 已提交
632 633 634 635 636 637
              D_out = (D_{in}+0.5) * scale_{factor} - 0.5
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5


          else:
638

X
xiaoting 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
              input : (N,C,D_in,H_in,W_in)
              output: (N,C,D_out,H_out,W_out) where:

              D_out = D_{in} * scale_{factor}
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

          Bicubic interpolation:

          if:
              align_corners = False
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = (H_{in}+0.5) * scale_{factor} - 0.5
              W_out = (W_{in}+0.5) * scale_{factor} - 0.5
          else:
              input : (N,C,H_in,W_in)
              output: (N,C,H_out,W_out) where:
              H_out = H_{in} * scale_{factor}
              W_out = W_{in} * scale_{factor}

660
          For details of nearest neighbor interpolation, please refer to Wikipedia:
X
xiaoting 已提交
661 662
          https://en.wikipedia.org/wiki/Nearest-neighbor_interpolation

663
          For details of bilinear interpolation, please refer to Wikipedia:
X
xiaoting 已提交
664 665
          https://en.wikipedia.org/wiki/Bilinear_interp_v2olation

666
          For details of trilinear interpolation, please refer to Wikipedia:
X
xiaoting 已提交
667 668 669 670 671 672 673 674 675 676 677 678 679 680
          https://en.wikipedia.org/wiki/Trilinear_interp_v2olation

          For details of bicubic interpolation, please refer to Wikipedia:
          https://en.wikipedia.org/wiki/Bicubic_interpolation
         )DOC");
  }
};

class InterpolateV2OpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
681
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "InterpolateGrad");
682 683 684 685
    OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")),
                   "Input",
                   "Out@GRAD",
                   "InterpolateGrad");
686

X
xiaoting 已提交
687 688 689 690 691 692 693 694 695 696 697 698 699 700
    auto dim_x = ctx->GetInputDim("X");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
    }
  }

  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.GetPlace());
  }

  framework::OpKernelType GetKernelTypeForVar(
701
      const std::string& var_name,
702
      const phi::DenseTensor& tensor,
X
xiaoting 已提交
703 704 705 706
      const framework::OpKernelType& expected_kernel_type) const override {
    if (var_name == "SizeTensor" || var_name == "Scale") {
      return expected_kernel_type;
    }
707 708
    return framework::OpKernelType(
        expected_kernel_type.data_type_, tensor.place(), tensor.layout());
X
xiaoting 已提交
709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741
  }
};

template <typename T>
class InterpolateV2GradMaker : public framework::SingleGradOpMaker<T> {
 public:
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;

 protected:
  void Apply(GradOpPtr<T> op) const override {
    op->SetType(this->ForwardOpType() + "_grad");
    op->SetInput("X", this->Input("X"));
    if (this->HasInput("SizeTensor") > 0) {
      op->SetInput("SizeTensor", this->Input("SizeTensor"));
    }
    if (this->HasInput("OutSize") > 0) {
      op->SetInput("OutSize", this->Input("OutSize"));
    }
    if (this->HasInput("Scale") > 0) {
      op->SetInput("Scale", this->Input("Scale"));
    }
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetAttrMap(this->Attrs());
  }
};

DECLARE_NO_NEED_BUFFER_VARS_INFERER(InterpolateV2GradNoNeedBufferVarsInferer,
                                    "X");

}  // namespace operators
}  // namespace paddle

742 743 744
// interp_v2 support scale_factor whose input type is list, this operation is
// not
// compatible with interp_op, so a new one is added in paddle2.0
X
xiaoting 已提交
745
namespace ops = paddle::operators;
746

747 748
DECLARE_INFER_SHAPE_FUNCTOR(bilinear_interp_v2,
                            BilinearInterpInferShapeFunctor,
749
                            PD_INFER_META(phi::InterpolateInferMeta));
750 751
DECLARE_INFER_SHAPE_FUNCTOR(nearest_interp_v2,
                            NearestInterpInferShapeFunctor,
752 753 754 755
                            PD_INFER_META(phi::InterpolateInferMeta));
DECLARE_INFER_SHAPE_FUNCTOR(trilinear_interp_v2,
                            TrilinearInterpInferShapeFunctor,
                            PD_INFER_META(phi::InterpolateInferMeta));
756 757
DECLARE_INFER_SHAPE_FUNCTOR(bicubic_interp_v2,
                            BicubicInterpInferShapeFunctor,
758
                            PD_INFER_META(phi::InterpolateInferMeta));
759 760
DECLARE_INFER_SHAPE_FUNCTOR(linear_interp_v2,
                            LinearInterpInferShapeFunctor,
761 762
                            PD_INFER_META(phi::InterpolateInferMeta));

763 764
REGISTER_OPERATOR(bilinear_interp_v2,
                  ops::InterpolateV2Op,
X
xiaoting 已提交
765 766
                  ops::InterpolateV2OpMaker,
                  ops::InterpolateV2GradMaker<paddle::framework::OpDesc>,
767 768
                  ops::InterpolateV2GradMaker<paddle::imperative::OpBase>,
                  BilinearInterpInferShapeFunctor);
769 770
REGISTER_OPERATOR(bilinear_interp_v2_grad,
                  ops::InterpolateV2OpGrad,
X
xiaoting 已提交
771
                  ops::InterpolateV2GradNoNeedBufferVarsInferer);
772 773
REGISTER_OPERATOR(nearest_interp_v2,
                  ops::InterpolateV2Op,
X
xiaoting 已提交
774 775
                  ops::InterpolateV2OpMaker,
                  ops::InterpolateV2GradMaker<paddle::framework::OpDesc>,
776 777
                  ops::InterpolateV2GradMaker<paddle::imperative::OpBase>,
                  NearestInterpInferShapeFunctor);
778 779
REGISTER_OPERATOR(nearest_interp_v2_grad,
                  ops::InterpolateV2OpGrad,
X
xiaoting 已提交
780
                  ops::InterpolateV2GradNoNeedBufferVarsInferer);
781 782
REGISTER_OPERATOR(trilinear_interp_v2,
                  ops::InterpolateV2Op,
X
xiaoting 已提交
783 784
                  ops::InterpolateV2OpMaker,
                  ops::InterpolateV2GradMaker<paddle::framework::OpDesc>,
785 786
                  ops::InterpolateV2GradMaker<paddle::imperative::OpBase>,
                  TrilinearInterpInferShapeFunctor);
787 788
REGISTER_OPERATOR(trilinear_interp_v2_grad,
                  ops::InterpolateV2OpGrad,
X
xiaoting 已提交
789
                  ops::InterpolateV2GradNoNeedBufferVarsInferer);
790 791
REGISTER_OPERATOR(bicubic_interp_v2,
                  ops::InterpolateV2Op,
X
xiaoting 已提交
792 793
                  ops::InterpolateV2OpMaker,
                  ops::InterpolateV2GradMaker<paddle::framework::OpDesc>,
794 795
                  ops::InterpolateV2GradMaker<paddle::imperative::OpBase>,
                  BicubicInterpInferShapeFunctor);
796 797
REGISTER_OPERATOR(bicubic_interp_v2_grad,
                  ops::InterpolateV2OpGrad,
X
xiaoting 已提交
798
                  ops::InterpolateV2GradNoNeedBufferVarsInferer);
799 800
REGISTER_OPERATOR(linear_interp_v2,
                  ops::InterpolateV2Op,
X
xiaoting 已提交
801 802
                  ops::InterpolateV2OpMaker,
                  ops::InterpolateV2GradMaker<paddle::framework::OpDesc>,
803 804
                  ops::InterpolateV2GradMaker<paddle::imperative::OpBase>,
                  LinearInterpInferShapeFunctor);
805 806
REGISTER_OPERATOR(linear_interp_v2_grad,
                  ops::InterpolateV2OpGrad,
X
xiaoting 已提交
807
                  ops::InterpolateV2GradNoNeedBufferVarsInferer);