fleet.cc 32.3 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

  http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"

17 18
#include <google/protobuf/text_format.h>

19 20
#include "paddle/fluid/distributed/ps/service/communicator/communicator.h"
#include "paddle/fluid/distributed/ps/table/table.h"
D
danleifeng 已提交
21 22 23 24
#include "paddle/fluid/distributed/ps/wrapper/fleet.h"
#if defined PADDLE_WITH_HETERPS && defined PADDLE_WITH_PSCORE
#include "paddle/fluid/framework/fleet/ps_gpu_wrapper.h"
#endif
T
tangwei12 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38

namespace paddle {
namespace distributed {

using framework::LoDTensor;
using framework::ProgramDesc;
using framework::VarDesc;
using framework::Variable;

const uint32_t MAX_FEASIGN_NUM = 1024 * 100 * 100;
std::shared_ptr<FleetWrapper> FleetWrapper::s_instance_ = NULL;
bool FleetWrapper::is_initialized_ = false;

std::shared_ptr<paddle::distributed::PSCore> FleetWrapper::pserver_ptr_ = NULL;
39 40 41 42 43 44 45 46 47 48 49 50 51 52
std::shared_ptr<paddle::distributed::PSClient> FleetWrapper::worker_ptr_ = NULL;

int FleetWrapper::RegisterHeterCallback(HeterCallBackFunc handler) {
  VLOG(0) << "RegisterHeterCallback support later";
  return 0;
}

int32_t FleetWrapper::CopyTable(const uint64_t src_table_id,
                                const uint64_t dest_table_id) {
  VLOG(0) << "CopyTable support later";
  return 0;
}

int32_t FleetWrapper::CopyTableByFeasign(
53 54
    const uint64_t src_table_id,
    const uint64_t dest_table_id,
55 56 57 58
    const std::vector<uint64_t>& feasign_list) {
  VLOG(0) << "CopyTableByFeasign support later";
  return 0;
}
T
tangwei12 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72

void FleetWrapper::SetClient2ClientConfig(int request_timeout_ms,
                                          int connect_timeout_ms,
                                          int max_retry) {
  client2client_request_timeout_ms_ = request_timeout_ms;
  client2client_connect_timeout_ms_ = connect_timeout_ms;
  client2client_max_retry_ = max_retry;
}

void FleetWrapper::LoadSparseOnServer(const std::string& path,
                                      const std::string& meta,
                                      uint32_t table_id) {
  VLOG(3) << "load sparse table " << table_id << " with " << path << " meta "
          << meta;
Z
zhaocaibei123 已提交
73
  pserver_ptr_->_server_ptr->GetTable(table_id)->Load(path, meta);
T
tangwei12 已提交
74 75
}

76 77
void FleetWrapper::InitServer(
    const std::string& dist_desc,
78 79 80
    const std::vector<std::string>& host_sign_list,
    int index,
    int trainers,
81
    const std::vector<framework::ProgramDesc>& server_sub_program) {
T
tangwei12 已提交
82 83 84 85
  if (!is_initialized_) {
    VLOG(3) << "Going to init server";
    pserver_ptr_ = std::shared_ptr<paddle::distributed::PSCore>(
        new paddle::distributed::PSCore());
86 87 88 89 90 91
    pserver_ptr_->InitServer(dist_desc,
                             &host_sign_list,
                             host_sign_list.size(),
                             index,
                             trainers,
                             server_sub_program);
T
tangwei12 已提交
92 93 94 95 96 97
    is_initialized_ = true;
  } else {
    VLOG(3) << "Server can be initialized only once";
  }
}

98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
void FleetWrapper::InitGFlag(const std::string& gflags) {
  VLOG(3) << "Init With Gflags:" << gflags;
  std::vector<std::string> flags = paddle::string::split_string(gflags);
  if (flags.size() < 1) {
    flags.push_back("-max_body_size=314217728");
    flags.push_back("-bthread_concurrency=40");
    flags.push_back("-socket_max_unwritten_bytes=2048000000");
    flags.push_back("-max_connection_pool_size=1950");
  }
  auto it = flags.begin();
  flags.insert(it, "exe default");
  char* flags_ptr[flags.size()];
  for (size_t i = 0; i < flags.size(); ++i) {
    flags_ptr[i] = (char*)(flags[i].c_str());  // NOLINT
  }
  int params_cnt = flags.size();
  char** params_ptr = &(flags_ptr[0]);
  ::GFLAGS_NAMESPACE::ParseCommandLineFlags(&params_cnt, &params_ptr, true);
}
T
tangwei12 已提交
117

118 119 120 121 122 123 124 125 126 127 128 129 130 131
void FleetWrapper::InitWorker(const std::string& dist_desc,
                              const std::vector<std::string>& host_sign_list,
                              int index) {
  if (!is_initialized_) {
    // not used, just for psclient's init
    // TODO(zhaocaibei123): remove this later
    std::map<uint64_t, std::vector<paddle::distributed::Region>>
        dense_pull_regions;

    if (worker_ptr_.get() == nullptr) {
      paddle::distributed::PSParameter ps_param;
      google::protobuf::TextFormat::ParseFromString(dist_desc, &ps_param);
      InitGFlag(ps_param.init_gflags());
      int servers = host_sign_list.size();
Z
zhaocaibei123 已提交
132
      ps_env_.SetPsServers(&host_sign_list, servers);
133
      worker_ptr_ = std::shared_ptr<paddle::distributed::PSClient>(
Z
zhaocaibei123 已提交
134 135
          paddle::distributed::PSClientFactory::Create(ps_param));
      worker_ptr_->Configure(ps_param, dense_pull_regions, ps_env_, index);
D
danleifeng 已提交
136 137 138 139 140 141 142
#if defined PADDLE_WITH_HETERPS && defined PADDLE_WITH_PSCORE
      VLOG(3) << "FleetWrapper::InitWorker InitializeGPUServer";
      auto* accessor = worker_ptr_->GetTableAccessor(0);
      auto ps_gpu_wrapper = paddle::framework::PSGPUWrapper::GetInstance();
      ps_gpu_wrapper->InitializeGPUServer(ps_param);
      ps_gpu_wrapper->SetTableAccessor(accessor);
#endif
143
    }
T
tangwei12 已提交
144
  } else {
145
    VLOG(3) << "Client can be initialized only once";
T
tangwei12 已提交
146 147 148
  }
}

149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
void FleetWrapper::InitFlWorker(const std::vector<std::string>& host_list,
                                int index,
                                const std::string& self_endpoint) {
  assert(worker_ptr_.get() != nullptr);
  uint32_t coordinator_num = host_list.size();
  ps_env_.SetCoordinators(&host_list, coordinator_num);
  auto ptr = dynamic_cast<BrpcPsClient*>(worker_ptr_.get());
  ptr->InitializeFlWorker(self_endpoint);
  return;
}

void FleetWrapper::PushFLClientInfoSync(const std::string& fl_client_info) {
  // FLClientInfo fci;
  // google::protobuf::TextFormat::ParseFromString(fl_client_info, &fci);
  // InitGFlag(fci.init_gflags());
  auto ptr = dynamic_cast<BrpcPsClient*>(worker_ptr_.get());
  VLOG(0) << "fl-ps > PushFLClientInfoSync: " << typeid(worker_ptr_).name()
          << ", " << typeid(ptr).name() << ", " << typeid(BrpcPsClient).name();
  ptr->PushFLClientInfoSync(fl_client_info);
  return;
}

std::string FleetWrapper::PullFlStrategy() {
  auto ptr = dynamic_cast<BrpcPsClient*>(worker_ptr_.get());
  std::string str = ptr->PullFlStrategy();
  return str;
}

T
tangwei12 已提交
177 178
void FleetWrapper::StopServer() {
  VLOG(3) << "Going to stop server";
Z
zhaocaibei123 已提交
179
  auto status = worker_ptr_->StopServer();
T
tangwei12 已提交
180 181 182 183 184
  status.wait();
}

void FleetWrapper::FinalizeWorker() {
  VLOG(3) << "Going to finalize worker";
Z
zhaocaibei123 已提交
185
  worker_ptr_->FinalizeWorker();
T
tangwei12 已提交
186 187 188 189 190 191 192 193 194 195
}

void FleetWrapper::BarrierWithTable(uint32_t barrier_type) {
  VLOG(3) << "Going to Barrier worker";
  auto* communicator = Communicator::GetInstance();
  communicator->BarrierWithTable(barrier_type);
}

uint64_t FleetWrapper::RunServer(const std::string& ip, uint32_t port) {
  VLOG(3) << "Going to run server with ip " << ip << " port " << port;
Z
zhaocaibei123 已提交
196
  auto ret = pserver_ptr_->RunServer(ip, port);
T
tangwei12 已提交
197 198 199 200 201
  return ret;
}

std::vector<uint64_t> FleetWrapper::GetClientsInfo() {
  VLOG(3) << "Going to get client info";
Z
zhaocaibei123 已提交
202
  std::vector<uint64_t> res = ps_env_.GetClientInfo();
203 204 205
  for (auto rr : res) {
    VLOG(2) << "FleetWrapper::GetClientInfo " << rr;
  }
Z
zhaocaibei123 已提交
206
  return res;
T
tangwei12 已提交
207 208
}

209 210
int FleetWrapper::SetClients(std::vector<uint64_t>& host_sign_list) {
  int node = host_sign_list.size();
Z
zhaocaibei123 已提交
211
  return ps_env_.SetPsClients(host_sign_list.data(), node);
212 213
}

T
tangwei12 已提交
214
void FleetWrapper::CreateClient2ClientConnection() {
Z
zhaocaibei123 已提交
215
  VLOG(1) << "Going to create client2client connection";
Z
zhaocaibei123 已提交
216 217 218
  worker_ptr_->CreateClient2ClientConnection(client2client_request_timeout_ms_,
                                             client2client_connect_timeout_ms_,
                                             client2client_max_retry_);
T
tangwei12 已提交
219 220
}

221
std::future<int32_t> FleetWrapper::PullSparseVarsAsync(
222 223 224 225 226 227
    const Scope& scope,
    const uint64_t table_id,
    const std::vector<std::string>& var_names,
    std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values,
    int fea_value_dim) {
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (auto name : var_names) {
    Variable* var = scope.FindVar(name);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
    int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }

  bool training = true;
257 258
  return pserver_ptr_->_worker_ptr->PullSparse(pull_result_ptr.data(),
                                               table_id,
Z
zhaocaibei123 已提交
259
                                               fea_keys->data(),
260 261
                                               fea_keys->size(),
                                               training);
262 263
}

T
tangwei12 已提交
264
void FleetWrapper::PullSparseVarsSync(
265 266 267 268 269 270
    const Scope& scope,
    const uint64_t table_id,
    const std::vector<std::string>& var_names,
    std::vector<uint64_t>* fea_keys,
    std::vector<std::vector<float>>* fea_values,
    int fea_value_dim,
T
tangwei12 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
    const std::vector<std::string>& var_emb_names) {
  std::vector<std::future<int32_t>> pull_sparse_status;
  pull_sparse_status.resize(0);
  fea_keys->clear();
  fea_keys->resize(0);
  fea_keys->reserve(MAX_FEASIGN_NUM);
  for (size_t var_index = 0; var_index < var_names.size(); ++var_index) {
    const std::string& name = var_names[var_index];
    Variable* var = scope.FindVar(name);
    if (var == nullptr) {
      continue;
    }
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    CHECK(tensor != nullptr) << "tensor of var " << name << " is null";
    int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();

    // skip slots which do not have embedding
    const std::string& emb_name = var_emb_names[var_index];
    Variable* emb_var = scope.FindVar(emb_name);
    if (emb_var == nullptr) {
      continue;
    }

    for (auto i = 0u; i < len; ++i) {
      if (ids[i] == 0u) {
        continue;
      }
      fea_keys->push_back(static_cast<uint64_t>(ids[i]));
    }
  }
  fea_values->resize(fea_keys->size() + 1);
  for (auto& t : *fea_values) {
    t.resize(fea_value_dim);
  }
  std::vector<float*> pull_result_ptr;
  for (auto& t : *fea_values) {
    pull_result_ptr.push_back(t.data());
  }
310
  bool training = true;
311 312 313 314 315
  auto status = pserver_ptr_->_worker_ptr->PullSparse(pull_result_ptr.data(),
                                                      table_id,
                                                      fea_keys->data(),
                                                      fea_keys->size(),
                                                      training);
T
tangwei12 已提交
316 317 318 319 320 321 322 323 324 325 326 327
  pull_sparse_status.push_back(std::move(status));
  for (auto& t : pull_sparse_status) {
    t.wait();
    auto status = t.get();
    if (status != 0) {
      LOG(ERROR) << "fleet pull sparse failed, status[" << status << "]";
      sleep(sleep_seconds_before_fail_exit_);
      exit(-1);
    }
  }
}

328 329 330
// is_training is true means training, false means inference, the behavior is
// different on pserver

331 332
void FleetWrapper::PullSparseToTensorSync(const uint64_t table_id,
                                          int fea_dim,
T
tangwei12 已提交
333 334
                                          uint64_t padding_id,
                                          platform::Place place,
335
                                          bool is_training,
T
tangwei12 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
                                          std::vector<const LoDTensor*>* inputs,
                                          std::vector<LoDTensor*>* outputs) {
  std::vector<uint64_t> fea_keys;
  std::vector<float*> pull_result_ptr;
  fea_keys.reserve(MAX_FEASIGN_NUM / 100);
  pull_result_ptr.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<float> init_value(fea_dim, 0);
  framework::LoDTensor* output = nullptr;
  float* output_data = nullptr;
  size_t output_index = -1;
  size_t output_len = 0;
  for (size_t index = 0; index < inputs->size(); ++index) {
    const framework::LoDTensor* tensor = inputs->at(index);
    const int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
    for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
      if (!output || output_len == size_t(output->numel())) {
        ++output_index;
        CHECK(output_index < outputs->size());  // NOLINT
        output = outputs->at(output_index);
        output->set_lod(tensor->lod());
        output_data = output->mutable_data<float>(place);
        output_len = 0;
        CHECK(output->numel() % fea_dim == 0);  // NOLINT
        CHECK(output_data != nullptr);          // NOLINT
      }
      uint64_t real_id = static_cast<uint64_t>(ids[i]);
      if (real_id == padding_id) {
364 365
        memcpy(output_data + output_len,
               init_value.data(),
T
tangwei12 已提交
366 367 368 369 370 371 372
               sizeof(float) * fea_dim);
        continue;
      }
      fea_keys.push_back(real_id);
      pull_result_ptr.push_back(output_data + output_len);
    }
  }
Z
zhaocaibei123 已提交
373

374 375 376 377 378
  auto status = worker_ptr_->PullSparse(pull_result_ptr.data(),
                                        table_id,
                                        fea_keys.data(),
                                        fea_keys.size(),
                                        is_training);
T
tangwei12 已提交
379 380 381 382 383 384 385 386 387
  status.wait();
  auto ret = status.get();
  if (ret != 0) {
    LOG(ERROR) << "fleet pull sparse failed, status[" << ret << "]";
    sleep(sleep_seconds_before_fail_exit_);
  }
}

void FleetWrapper::PullDenseVarsAsync(
388 389
    const Scope& scope,
    const uint64_t tid,
T
tangwei12 已提交
390
    const std::vector<std::string>& var_names,
391 392
    std::vector<std::future<int32_t>>* pull_dense_status,
    bool in_cpu) {
Z
zhaocaibei123 已提交
393
  auto& regions = regions_[tid];
T
tangwei12 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406
  regions.clear();
  regions.resize(var_names.size());
  for (auto i = 0u; i < var_names.size(); ++i) {
    std::string varname = var_names[i];
    if (!in_cpu) {
      varname = var_names[i] + "pin";
    }
    Variable* var = scope.FindVar(varname);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
    float* w = tensor->data<float>();
    paddle::distributed::Region reg(w, tensor->numel());
    regions[i] = std::move(reg);
  }
Z
zhaocaibei123 已提交
407 408

  auto status = worker_ptr_->PullDense(regions.data(), regions.size(), tid);
T
tangwei12 已提交
409 410 411 412
  pull_dense_status->push_back(std::move(status));
}

void FleetWrapper::PullDenseVarsSync(
413 414
    const Scope& scope,
    const uint64_t tid,
T
tangwei12 已提交
415
    const std::vector<std::string>& var_names) {
Z
zhaocaibei123 已提交
416
  auto& regions = regions_[tid];
T
tangwei12 已提交
417 418 419 420 421
  regions.clear();
  regions.reserve(var_names.size());
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
422 423 424 425 426
    if (!platform::is_gpu_place(tensor->place())) {
      float* w = tensor->data<float>();
      paddle::distributed::Region reg(w, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
T
tangwei12 已提交
427
  }
Z
zhaocaibei123 已提交
428
  auto status = worker_ptr_->PullDense(regions.data(), regions.size(), tid);
T
tangwei12 已提交
429 430 431 432
  status.wait();
}

void FleetWrapper::PushDenseParamSync(
433 434
    const Scope& scope,
    const uint64_t table_id,
T
tangwei12 已提交
435 436 437 438 439 440 441
    const std::vector<std::string>& var_names) {
  auto place = platform::CPUPlace();
  std::vector<paddle::distributed::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
442 443 444 445 446
    if (!platform::is_gpu_place(tensor->place())) {
      float* g = tensor->mutable_data<float>(place);
      paddle::distributed::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
T
tangwei12 已提交
447
  }
448
  auto push_status =
Z
zhaocaibei123 已提交
449
      worker_ptr_->PushDenseParam(regions.data(), regions.size(), table_id);
T
tangwei12 已提交
450 451 452 453 454 455
  push_status.wait();
  auto status = push_status.get();
  CHECK(status == 0) << "push dense param failed, status[" << status << "]";
}

void FleetWrapper::PushDenseVarsSync(
456 457
    Scope* scope,
    const uint64_t table_id,
T
tangwei12 已提交
458 459 460
    const std::vector<std::string>& var_names) {}

void FleetWrapper::PushDenseVarsAsync(
461 462
    const Scope& scope,
    const uint64_t table_id,
T
tangwei12 已提交
463
    const std::vector<std::string>& var_names,
464 465
    std::vector<std::future<int32_t>>* push_sparse_status,
    float scale_datanorm,
T
tangwei12 已提交
466
    int batch_size) {
Z
zhaocaibei123 已提交
467 468 469 470 471 472
  auto place = platform::CPUPlace();
  std::vector<paddle::distributed::Region> regions;
  for (auto& t : var_names) {
    Variable* var = scope.FindVar(t);
    CHECK(var != nullptr) << "var[" << t << "] not found";
    LoDTensor* tensor = var->GetMutable<LoDTensor>();
473
    int count = tensor->numel();
Z
zhaocaibei123 已提交
474
    float* g = tensor->mutable_data<float>(place);
475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
    // TODO(zhaocaibei123): how to get batch_size in op?
    if (scale_datanorm >= 0) {
      if (t.find(".batch_size@GRAD") != std::string::npos ||
          t.find(".batch_sum@GRAD") != std::string::npos) {
        Eigen::Map<Eigen::MatrixXf> mat(g, 1, count);
        float scale = 1.0 / batch_size;
        mat *= scale;
      } else if (t.find(".batch_square_sum@GRAD") != std::string::npos) {
        VLOG(3) << "epsilon: " << scale_datanorm;
        for (int i = 0; i < count; ++i) {
          g[i] = (g[i] - batch_size * scale_datanorm) / batch_size +
                 batch_size * scale_datanorm;
        }
      }
    }

Z
zhaocaibei123 已提交
491 492 493 494 495 496 497
    paddle::distributed::Region reg(g, tensor->numel());
    regions.emplace_back(std::move(reg));
    VLOG(3) << "FleetWrapper::PushDenseVarsAsync Var " << t << " talbe_id "
            << table_id << " Temp_data[0] " << g[0] << " Temp_data[-1] "
            << g[tensor->numel() - 1];
  }

Z
zhaocaibei123 已提交
498 499
  auto push_status =
      worker_ptr_->PushDense(regions.data(), regions.size(), table_id);
T
tangwei12 已提交
500 501 502
}

void FleetWrapper::PushSparseVarsAsync(
503 504
    const Scope& scope,
    const uint64_t table_id,
T
tangwei12 已提交
505 506 507 508 509 510 511
    const std::string& grad_varname,
    std::vector<std::future<int32_t>>* push_sparse_status) {
  std::vector<std::string> varnames;
  varnames.push_back(grad_varname);

  auto* communicator = Communicator::GetInstance();
  PADDLE_ENFORCE_EQ(
512 513
      communicator->Check(table_id),
      true,
T
tangwei12 已提交
514 515 516 517 518 519
      platform::errors::InvalidArgument(
          "can not find table: %s, please check your config", table_id));
  communicator->Send(varnames, scope);
}

void FleetWrapper::PushSparseVarsWithLabelAsync(
520 521 522 523
    const Scope& scope,
    const uint64_t table_id,
    const std::vector<uint64_t>& fea_keys,
    const std::vector<float>& fea_labels,
T
tangwei12 已提交
524
    const std::vector<std::string>& sparse_key_names,
525 526
    const std::vector<std::string>& sparse_grad_names,
    const int emb_dim,
T
tangwei12 已提交
527
    std::vector<std::vector<float>>* push_values,
528 529 530 531 532 533
    std::vector<std::future<int32_t>>* push_sparse_status,
    const int batch_size,
    const bool use_cvm,
    const bool dump_slot,
    std::vector<uint64_t>* sparse_push_keys,
    const bool no_cvm) {
T
tangwei12 已提交
534 535 536 537 538
  // not support
  return;
}

void FleetWrapper::PushSparseFromTensorWithLabelAsync(
539 540 541 542 543 544 545 546
    const Scope& scope,
    const uint64_t table_id,
    int fea_dim,
    uint64_t padding_id,
    bool scale_sparse,
    const std::string& accesor,
    const std::string& click_name,
    platform::Place place,
T
tangwei12 已提交
547 548 549 550 551 552 553
    const std::vector<std::string>& input_names,
    std::vector<const LoDTensor*>* inputs,
    std::vector<const LoDTensor*>* outputs) {
  // not support
  return;
}

Z
zhaocaibei123 已提交
554
void FleetWrapper::PushSparseFromTensorAsync(
555 556 557 558 559
    const uint64_t table_id,
    int fea_dim,
    uint64_t padding_id,
    platform::Place place,
    std::vector<const LoDTensor*>* inputs,
560
    std::vector<int>& slots,
561 562 563 564
    const LoDTensor* shows,
    const LoDTensor* clks,
    std::vector<LoDTensor*>* outputs,
    bool use_cvm_op) {
565
  CHECK(slots.size() == inputs->size());
Z
zhaocaibei123 已提交
566
  int batch_size = -1;
Z
zhaocaibei123 已提交
567
  bool batch_size_consist = true;
Z
zhaocaibei123 已提交
568
  for (auto* input : *inputs) {
D
danleifeng 已提交
569
    size_t cur_batch_size =
Z
zhaocaibei123 已提交
570 571
        input->lod().size() ? input->lod()[0].size() - 1 : input->dims()[0];
    if (batch_size == -1) {
D
danleifeng 已提交
572 573
      batch_size = int(cur_batch_size);
    } else if (batch_size != int(cur_batch_size)) {
Z
zhaocaibei123 已提交
574 575 576
      // CHECK(batch_size == cur_batch_size);  // NOLINT
      batch_size_consist = false;
      break;
Z
zhaocaibei123 已提交
577 578 579 580
    }
  }
  CHECK(batch_size > 0);  // NOLINT

D
danleifeng 已提交
581
  size_t show_size =
Z
zhaocaibei123 已提交
582
      shows->lod().size() ? shows->lod()[0].size() - 1 : shows->dims()[0];
D
danleifeng 已提交
583 584
  CHECK(show_size == size_t(batch_size) || show_size == 1);
  size_t clk_size =
Z
zhaocaibei123 已提交
585
      clks->lod().size() ? clks->lod()[0].size() - 1 : clks->dims()[0];
D
danleifeng 已提交
586
  CHECK(clk_size == size_t(batch_size) || clk_size == 1);
Z
zhaocaibei123 已提交
587

588
  CHECK(outputs->size() == inputs->size());
Z
zhaocaibei123 已提交
589 590 591 592 593 594 595 596 597 598 599 600
  std::vector<uint64_t> push_keys;
  push_keys.reserve(MAX_FEASIGN_NUM / 100);
  std::vector<std::vector<float>> push_values;
  push_values.reserve(MAX_FEASIGN_NUM / 100);
  size_t output_len = 0;
  size_t input_idx = 0;

  VLOG(2) << "fleet.cc::emb_dim: " << fea_dim;

  // TODO(zhaocaibei123): check type of show/clk is int? float? uint64?
  // const long int* show_tensor = shows->data<int64_t>();
  // const long int* clk_tensor = clks->data<int64_t>();
601 602
  const float* show_tensor = shows->data<float>();
  const float* clk_tensor = clks->data<float>();
Z
zhaocaibei123 已提交
603 604

  for (size_t index = 0; index < inputs->size(); ++index) {
605 606 607 608 609 610 611 612
    framework::LoDTensor* g_tensor = outputs->at(index);
    float* g = g_tensor->data<float>();
    // no cvm
    if (batch_size_consist) {  // TODO(zhaocaibei123): add config
                               // scale_sparse_gradient_with_batch_size_
      Eigen::Map<
          Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>>
          g_mat(g, g_tensor->numel() / fea_dim, fea_dim);
613 614 615 616 617
      if (use_cvm_op) {
        g_mat.rightCols(fea_dim - 2) *= batch_size;
      } else {
        g_mat.rightCols(fea_dim) *= batch_size;
      }
618 619
    }

Z
zhaocaibei123 已提交
620 621 622
    const framework::LoDTensor* tensor = inputs->at(index);
    const int64_t* ids = tensor->data<int64_t>();
    size_t len = tensor->numel();
623
    output_len = 0;
Z
zhaocaibei123 已提交
624 625

    if (tensor->lod().size() > 0) {
Z
zhangchunle 已提交
626
      for (size_t i = 0; i < tensor->lod()[0].size() - 1; ++i) {
627
        for (size_t j = tensor->lod()[0][i]; j < tensor->lod()[0][i + 1];
Z
zhaocaibei123 已提交
628 629 630 631 632 633
             ++j, output_len += fea_dim) {
          uint64_t real_id = static_cast<uint64_t>(ids[j]);
          if (real_id == padding_id) {
            continue;
          }
          push_keys.emplace_back(real_id);
634 635
          if (use_cvm_op) {
            push_values.emplace_back(fea_dim + 1);
636
            push_values.back()[0] = static_cast<float>(slots[index]);
637 638 639 640 641
            float* data = push_values.back().data() + 1;
            memcpy(data, g + output_len, sizeof(float) * fea_dim);
          } else {
            push_values.emplace_back(fea_dim + 3);
            // slot show clk grad... consistent with CtrCommonPushValue defined
642 643
            // in ctr_accessor.h
            push_values.back()[0] = static_cast<float>(slots[index]);
D
danleifeng 已提交
644 645 646 647
            push_values.back()[1] =
                (i >= show_size ? 1 : static_cast<float>(show_tensor[i]));
            push_values.back()[2] =
                (i >= clk_size ? 0 : static_cast<float>(clk_tensor[i]));
648 649 650 651 652 653 654
            float* data = push_values.back().data() + 3;
            memcpy(data, g + output_len, sizeof(float) * fea_dim);
          }
          ++input_idx;
        }
      }
    } else {
Z
zhangchunle 已提交
655
      for (size_t i = 0; i < len; ++i, output_len += fea_dim) {
656 657 658 659 660 661 662
        uint64_t real_id = static_cast<uint64_t>(ids[i]);
        if (real_id == padding_id) {
          continue;
        }
        push_keys.emplace_back(real_id);
        if (use_cvm_op) {
          push_values.emplace_back(fea_dim + 1);
663
          push_values.back()[0] = static_cast<float>(slots[index]);
664 665 666
          float* data = push_values.back().data() + 1;
          memcpy(data, g + output_len, sizeof(float) * fea_dim);
        } else {
Z
zhaocaibei123 已提交
667 668 669
          push_values.emplace_back(fea_dim + 3);
          // slot show clk grad... consistent with CtrCommonPushValue defined in
          // ctr_accessor.h
670 671 672
          push_values.back()[0] = static_cast<float>(slots[index]);
          push_values.back()[1] = (i >= show_size ? 1 : show_tensor[i]);
          push_values.back()[2] = (i >= clk_size ? 0 : clk_tensor[i]);
Z
zhaocaibei123 已提交
673
          float* data = push_values.back().data() + 3;
674
          memcpy(data, g + output_len, sizeof(float) * fea_dim);
Z
zhaocaibei123 已提交
675 676 677 678
        }
        ++input_idx;
      }
    }
Z
zhangchunle 已提交
679
    CHECK(static_cast<int64_t>(output_len) == g_tensor->numel());
Z
zhaocaibei123 已提交
680 681 682 683 684 685 686 687
  }

  std::vector<float*> push_g_vec(input_idx, nullptr);

  for (auto i = 0u; i < push_keys.size(); ++i) {
    push_g_vec[i] = push_values.at(i).data();
  }

688 689
  auto status = worker_ptr_->PushSparse(table_id,
                                        push_keys.data(),
Z
zhaocaibei123 已提交
690 691
                                        (const float**)push_g_vec.data(),
                                        push_keys.size());
Z
zhaocaibei123 已提交
692 693 694
}

void FleetWrapper::LoadModel(const std::string& path, const int mode) {
Z
zhaocaibei123 已提交
695
  auto ret = worker_ptr_->Load(path, std::to_string(mode));
T
tangwei12 已提交
696 697 698 699 700 701 702
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model from path:" << path << " failed";
  }
}

void FleetWrapper::LoadModelOneTable(const uint64_t table_id,
703 704
                                     const std::string& path,
                                     const int mode) {
Z
zhaocaibei123 已提交
705
  auto ret = worker_ptr_->Load(table_id, path, std::to_string(mode));
T
tangwei12 已提交
706 707 708 709 710 711 712 713
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "load model of table id: " << table_id
               << ", from path: " << path << " failed";
  }
}

void FleetWrapper::SaveModel(const std::string& path, const int mode) {
Z
zhaocaibei123 已提交
714
  auto ret = worker_ptr_->Save(path, std::to_string(mode));
T
tangwei12 已提交
715 716 717 718 719 720 721 722
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "save model failed";
  }
}

void FleetWrapper::SaveModelOneTable(const uint64_t table_id,
723 724
                                     const std::string& path,
                                     const int mode) {
Z
zhaocaibei123 已提交
725
  auto ret = worker_ptr_->Save(table_id, path, std::to_string(mode));
T
tangwei12 已提交
726 727 728 729 730 731 732
  ret.wait();
  if (ret.get() != 0) {
    LOG(ERROR) << "save model of table id: " << table_id
               << ", to path: " << path << " failed";
  }
}

733 734
void FleetWrapper::RecvAndSaveTable(const uint64_t table_id,
                                    const std::string& path) {
Z
zhaocaibei123 已提交
735
  auto ret = worker_ptr_->RecvAndSaveTable(table_id, path);
736 737 738 739 740 741
  if (ret != 0) {
    LOG(ERROR) << "save model of table id: " << table_id
               << ", to path: " << path << " failed";
  }
}

T
tangwei12 已提交
742
void FleetWrapper::PrintTableStat(const uint64_t table_id) {
Z
zhaocaibei123 已提交
743
  auto ret = worker_ptr_->PrintTableStat(table_id);
T
tangwei12 已提交
744 745 746 747 748 749 750
  ret.wait();
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "print table stat failed";
  }
}

751
void FleetWrapper::ShrinkSparseTable(int table_id, int threshold) {
Z
zhaocaibei123 已提交
752
  auto ret = worker_ptr_->Shrink(table_id, std::to_string(threshold));
T
tangwei12 已提交
753
  ret.wait();
754 755 756 757
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "shrink sparse table stat failed";
  }
T
tangwei12 已提交
758 759 760
}

void FleetWrapper::ClearModel() {
Z
zhaocaibei123 已提交
761
  auto ret = pserver_ptr_->_worker_ptr->Clear();
T
tangwei12 已提交
762 763 764 765
  ret.wait();
}

void FleetWrapper::ClearOneTable(const uint64_t table_id) {
Z
zhaocaibei123 已提交
766
  auto ret = pserver_ptr_->_worker_ptr->Clear(table_id);
T
tangwei12 已提交
767 768 769
  ret.wait();
}

770 771
void FleetWrapper::ShrinkDenseTable(int table_id,
                                    Scope* scope,
T
tangwei12 已提交
772
                                    std::vector<std::string> var_list,
773 774
                                    float decay,
                                    int emb_dim) {
T
tangwei12 已提交
775 776 777 778 779
  std::vector<paddle::distributed::Region> regions;
  for (std::string& name : var_list) {
    if (name.find("batch_sum") != std::string::npos) {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
780
      VLOG(3) << "prepare shrink dense batch_sum";
T
tangwei12 已提交
781 782 783 784 785
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();

      // show_batch_sum += N * log(decay)
      std::string size_name = name;
786 787
      size_name.replace(
          size_name.find("batch_sum"), size_name.length(), "batch_size");
T
tangwei12 已提交
788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806
      Variable* var_size = scope->FindVar(size_name);
      CHECK(var_size != nullptr) << "var[" << size_name << "] not found";
      VLOG(3) << "shrink dense batch_sum: " << name << ", " << size_name;
      float* g_size = var_size->GetMutable<LoDTensor>()->data<float>();

      for (int k = 0; k < tensor->numel(); k += emb_dim) {
        g[k] = g[k] + g_size[k] * log(decay);
      }
      paddle::distributed::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    } else {
      Variable* var = scope->FindVar(name);
      CHECK(var != nullptr) << "var[" << name << "] not found";
      LoDTensor* tensor = var->GetMutable<LoDTensor>();
      float* g = tensor->data<float>();
      paddle::distributed::Region reg(g, tensor->numel());
      regions.emplace_back(std::move(reg));
    }
  }
Z
zhaocaibei123 已提交
807
  auto push_status = pserver_ptr_->_worker_ptr->PushDenseParam(
T
tangwei12 已提交
808 809 810 811 812 813 814 815 816 817 818 819
      regions.data(), regions.size(), table_id);
  push_status.wait();
  auto status = push_status.get();
  if (status != 0) {
    // PADDLE_THORW(platform::errors::Fatal(
    //    "push shrink dense param failed, status is [%d].", status));
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
}

void FleetWrapper::ClientFlush() {
820 821 822 823
  if (worker_ptr_.get() == nullptr) {
    VLOG(0) << "worker_ptr null, do nothing";
    return;
  }
Z
zhaocaibei123 已提交
824
  auto ret = worker_ptr_->Flush();
T
tangwei12 已提交
825
  ret.wait();
826 827 828 829
  int32_t err_code = ret.get();
  if (err_code == -1) {
    LOG(ERROR) << "Client Flush failed";
  }
T
tangwei12 已提交
830 831 832 833
}

int FleetWrapper::RegisterClientToClientMsgHandler(int msg_type,
                                                   MsgHandlerFunc handler) {
834 835
  if (worker_ptr_.get() == nullptr) {
    VLOG(0) << "FleetWrapper::Client is null";
Z
zhaocaibei123 已提交
836 837
    return -1;
  } else {
Z
zhaocaibei123 已提交
838
    return worker_ptr_->RegisteClient2ClientMsgHandler(msg_type, handler);
Z
zhaocaibei123 已提交
839
  }
T
tangwei12 已提交
840 841 842 843
}

std::future<int32_t> FleetWrapper::SendClientToClientMsg(
    int msg_type, int to_client_id, const std::string& msg) {
Z
zhaocaibei123 已提交
844
  return worker_ptr_->SendClient2ClientMsg(msg_type, to_client_id, msg);
T
tangwei12 已提交
845 846
}

Z
zhaocaibei123 已提交
847 848 849 850 851 852 853 854 855 856 857 858 859 860
double FleetWrapper::GetCacheThreshold(int table_id) {
  double cache_threshold = 0.0;
  auto ret = worker_ptr_->Flush();
  ret.wait();
  ret = worker_ptr_->GetCacheThreshold(table_id, cache_threshold);
  ret.wait();
  if (cache_threshold < 0) {
    LOG(ERROR) << "get cache threshold failed";
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
  return cache_threshold;
}

861 862 863 864 865 866
void FleetWrapper::CacheShuffle(int table_id,
                                const std::string& path,
                                const int mode,
                                const double cache_threshold) {
  auto ret = worker_ptr_->CacheShuffle(
      table_id, path, std::to_string(mode), std::to_string(cache_threshold));
Z
zhaocaibei123 已提交
867 868 869 870 871 872 873 874 875
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "cache shuffle failed";
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
}

876 877
int32_t FleetWrapper::SaveCache(int table_id,
                                const std::string& path,
Z
zhaocaibei123 已提交
878 879 880 881 882 883 884 885 886 887 888 889
                                const int mode) {
  auto ret = worker_ptr_->SaveCache(table_id, path, std::to_string(mode));
  ret.wait();
  int32_t feasign_cnt = ret.get();
  if (feasign_cnt == -1) {
    LOG(ERROR) << "table save cache failed";
    sleep(sleep_seconds_before_fail_exit_);
    exit(-1);
  }
  return feasign_cnt;
}

Z
zhaocaibei123 已提交
890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907
void FleetWrapper::Revert() {
  auto ret = worker_ptr_->Revert();
  ret.wait();
  if (ret.get() == -1) {
    LOG(ERROR) << "table revert failed";
    exit(-1);
  }
}

void FleetWrapper::CheckSavePrePatchDone() {
  auto ret = worker_ptr_->CheckSavePrePatchDone();
  ret.wait();
  if (ret.get() == -1) {
    LOG(ERROR) << "table revert failed";
    exit(-1);
  }
}

T
tangwei12 已提交
908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924
std::default_random_engine& FleetWrapper::LocalRandomEngine() {
  struct engine_wrapper_t {
    std::default_random_engine engine;

    engine_wrapper_t() {
      struct timespec tp;
      clock_gettime(CLOCK_REALTIME, &tp);
      double cur_time = tp.tv_sec + tp.tv_nsec * 1e-9;
      static std::atomic<uint64_t> x(0);
      std::seed_seq sseq = {x++, x++, x++, (uint64_t)(cur_time * 1000)};
      engine.seed(sseq);
    }
  };
  thread_local engine_wrapper_t r;
  return r.engine;
}

925 926 927
size_t FleetWrapper::GetAbsoluteSum(size_t start,
                                    size_t end,
                                    size_t level,
T
tangwei12 已提交
928 929 930 931 932 933 934 935 936 937 938 939 940 941 942
                                    const framework::LoD& lod) {
  if (level >= lod.size() - 1) {
    return end - start;
  }
  size_t ret = 0;
  for (size_t i = start; i < end - 1; ++i) {
    size_t pos1 = lod[level][i];
    size_t pos2 = lod[level][i + 1];
    ret += GetAbsoluteSum(pos1, pos2, level + 1, lod);
  }
  return ret;
}

}  // end namespace distributed
}  // end namespace paddle