eager_functions.cc 38.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
// disable numpy compile error
#include <Python.h>

#include <string>
#include <vector>

#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"

#include "paddle/fluid/eager/accumulation/accumulation_node.h"
#include "paddle/fluid/eager/api/all.h"
#include "paddle/fluid/eager/autograd_meta.h"
#include "paddle/fluid/eager/backward.h"
24
#include "paddle/fluid/eager/custom_operator/custom_operator_node.h"
25
#include "paddle/fluid/eager/utils.h"
26
#include "paddle/fluid/framework/convert_utils.h"
27 28
#include "paddle/fluid/framework/custom_operator.h"
#include "paddle/fluid/framework/op_meta_info_helper.h"
29
#include "paddle/fluid/framework/python_headers.h"
30 31
#include "paddle/fluid/memory/allocation/allocator.h"
#include "paddle/fluid/memory/memcpy.h"
W
wanghuancoder 已提交
32
#include "paddle/fluid/platform/device/gpu/gpu_info.h"
33
#include "paddle/fluid/platform/dynload/dynamic_loader.h"
34
#include "paddle/fluid/platform/enforce.h"
W
wanghuancoder 已提交
35
#include "paddle/fluid/platform/stream/cuda_stream.h"
36 37 38
#include "paddle/fluid/pybind/eager.h"
#include "paddle/fluid/pybind/eager_utils.h"
#include "paddle/fluid/pybind/exception.h"
39
#include "paddle/fluid/pybind/tensor_py.h"
40
#include "paddle/phi/api/ext/op_meta_info.h"
41 42 43 44 45 46
#include "paddle/phi/api/lib/utils/allocator.h"
#include "paddle/phi/api/lib/utils/storage.h"
#include "paddle/phi/api/lib/utils/tensor_utils.h"
#include "paddle/phi/common/data_type.h"
#include "paddle/phi/core/compat/convert_utils.h"
#include "paddle/phi/core/dense_tensor.h"
47 48 49
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"

50 51 52 53 54
namespace paddle {
namespace pybind {

namespace py = ::pybind11;

55
extern PyTypeObject* p_tensor_type;
56 57
extern PyTypeObject* g_multidevicefeedreader_pytype;
extern PyTypeObject* g_orderedmultidevicefeedreader_pytype;
58 59 60 61 62 63 64 65 66 67 68

size_t PyArray_Size_(PyObject* numpy_data) {
  size_t res = 1;
  auto dims = pybind11::detail::array_proxy(numpy_data)->dimensions;
  auto nd = pybind11::detail::array_proxy(numpy_data)->nd;
  while (nd--) {
    res *= (*dims++);
  }
  return res;
}

69
class EagerNumpyAllocation : public phi::Allocation {
70
 public:
71
  explicit EagerNumpyAllocation(PyObject* numpy_data, phi::DataType dtype)
72 73
      : Allocation(
            static_cast<void*>(pybind11::detail::array_proxy(numpy_data)->data),
74
            framework::DataTypeSize(dtype) * PyArray_Size_(numpy_data),
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
            paddle::platform::CPUPlace()),
        arr_(numpy_data) {
    PADDLE_ENFORCE_NOT_NULL(arr_, platform::errors::InvalidArgument(
                                      "The underlying PyObject pointer of "
                                      "numpy array cannot be nullptr"));
    PADDLE_ENFORCE_NE(
        arr_, Py_None,
        platform::errors::PreconditionNotMet(
            "The underlying PyObject pointer of numpy array cannot be None"));
    Py_INCREF(arr_);
  }
  ~EagerNumpyAllocation() override {
    py::gil_scoped_acquire gil;
    Py_DECREF(arr_);
  }

 private:
  PyObject* arr_;
};

static PyObject* eager_api_scale(PyObject* self, PyObject* args,
                                 PyObject* kwargs) {
  EAGER_TRY
  // TODO(jiabin): Sync Tensor and Variable here when we support
99 100 101 102 103 104
  paddle::experimental::Tensor ret = egr::scale(
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor,
      CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 1), 1),
      CastPyArg2AttrFloat(PyTuple_GET_ITEM(args, 2), 2),
      CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3),
      CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4));
105 106 107 108 109 110 111
  return ToPyObject(ret);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_run_backward(PyObject* self, PyObject* args,
                                        PyObject* kwargs) {
  EAGER_TRY
112 113
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
114 115
  egr::Backward(tensors, grad_tensors,
                CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2));
116 117 118 119 120
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
static PyObject* eager_api_run_partial_grad(PyObject* self, PyObject* args,
                                            PyObject* kwargs) {
  EAGER_TRY
  auto tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 0), 0);
  auto inputs = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 1), 1);
  auto grad_tensors = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 2), 2);
  auto retain_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  auto create_graph = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  auto only_inputs = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 5), 5);
  auto allow_unused = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 6), 6);
  auto no_grad_vars = CastPyArg2VectorOfTensor(PyTuple_GET_ITEM(args, 7), 7);

  std::vector<paddle::experimental::Tensor> result =
      egr::Grad(tensors, inputs, grad_tensors, retain_graph, create_graph,
                only_inputs, allow_unused, no_grad_vars);
  VLOG(1) << " in eager_api_run_partial_grad, after runing egr::Grad";
  return ToPyObject(result, true /* return_py_none_if_not_initialize */);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

141 142 143
static PyObject* eager_api_tensor_copy(PyObject* self, PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
144 145 146 147
  paddle::experimental::Tensor& src =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 0))->tensor;
  paddle::experimental::Tensor& dst =
      reinterpret_cast<TensorObject*>(PyTuple_GET_ITEM(args, 1))->tensor;
148 149 150
  auto place = CastPyArg2Place(PyTuple_GET_ITEM(args, 2), 2);
  bool blocking = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);

151
  dst = src.copy_to(place, blocking);
152 153 154 155 156 157 158 159 160
  egr::EagerUtils::autograd_meta(&dst)->SetStopGradient(
      egr::EagerUtils::autograd_meta(&(src))->StopGradient());
  egr::EagerUtils::autograd_meta(&dst)->SetPersistable(
      egr::EagerUtils::autograd_meta(&(src))->Persistable());
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

161 162
static PyObject* eager_api_read_next_tensor_list(PyObject* self, PyObject* args,
                                                 PyObject* kwargs) {
163
  EAGER_TRY
164 165 166 167 168 169
  auto tensor_base_list =
      CastPyArg2VectorOfTensorBase(PyTuple_GET_ITEM(args, 0), 0);
  std::vector<paddle::experimental::Tensor> tensor_list;
  tensor_list.reserve(tensor_base_list.size());
  auto func = [](framework::Tensor& tensor_base) {
    paddle::experimental::Tensor tensor(
170
        egr::Controller::Instance().GenerateUniqueName());
171
    auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
172 173
    autograd_meta->SetPersistable(false);
    autograd_meta->SetStopGradient(true);
174
    tensor.set_impl(std::make_shared<phi::DenseTensor>(tensor_base));
175
    return tensor;
176
  };
177 178
  for (auto& tensor_base : tensor_base_list) {
    tensor_list.emplace_back(func(tensor_base));
179
  }
180
  return ToPyObject(tensor_list);
181 182 183
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
static void ConstructFwdAndBwdMap(
    const std::vector<paddle::OpMetaInfo>& vec_map,
    const std::string& op_type) {
  auto& in_out_map = egr::Controller::Instance().GetCustomEdgesSlotMap();
  if (in_out_map.find(op_type) != in_out_map.end()) {
    VLOG(7) << "Find Exist CustomEdgesSlotMap Skip >>>> ";
    return;
  } else {
    VLOG(7) << "Construct CustomEdgesSlotMap ";
    auto inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[0]);
    auto outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[0]);
    auto attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[0]);
    auto grad_outputs_names =
        paddle::framework::OpMetaInfoHelper::GetOutputs(vec_map[1]);
    auto grad_inputs_names =
        paddle::framework::OpMetaInfoHelper::GetInputs(vec_map[1]);
    auto grad_attrs_names =
        paddle::framework::OpMetaInfoHelper::GetAttrs(vec_map[1]);
    std::vector<std::unordered_map<int, int>> res(5);
    in_out_map.insert({op_type, res});
    // Prepare pos map for grad_outputs
    VLOG(7) << "Prepare pos map for grad_outputs";
    PADDLE_ENFORCE_LE(
        grad_outputs_names.size(), inputs_names.size(),
        paddle::platform::errors::InvalidArgument(
            "Grad outputs num should be less equal than forward inputs num."));
    for (size_t i = 0; i < grad_outputs_names.size(); i++) {
      size_t end = grad_outputs_names[i].find("@GRAD");
      PADDLE_ENFORCE_NE(
          end, std::string::npos,
          paddle::platform::errors::NotFound(
              "All Grad outputs should be grad and we got %s is not grad var, "
              "please check your op and change to fit the rule.",
              grad_outputs_names[i]));
      for (size_t j = 0; j < inputs_names.size(); j++) {
        if (grad_outputs_names[i].substr(0, end) == inputs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " inputs: " << inputs_names[j] << " related to No." << i
                  << " grad_outputs: " << grad_outputs_names[i];
          in_out_map[op_type][0][j] = i;
        }
      }
    }
    // Prepare pos map for grad_inputs
    for (size_t i = 0; i < grad_inputs_names.size(); i++) {
      size_t end = grad_inputs_names[i].find("@GRAD");
      if (end != std::string::npos) {
        for (size_t j = 0; j < outputs_names.size(); j++) {
          if (grad_inputs_names[i].substr(0, end) == outputs_names[j]) {
            VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                    << " outputs: " << outputs_names[j] << " related to No."
                    << i << " grad_inputs's grad: " << grad_inputs_names[i];
            in_out_map[op_type][1][j] = i;
          }
        }
      } else {
        if (std::find(outputs_names.begin(), outputs_names.end(),
                      grad_inputs_names[i]) != outputs_names.end()) {
          for (size_t j = 0; j < outputs_names.size(); j++) {
            if (grad_inputs_names[i] == outputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " outputs: " << outputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd outputs: " << grad_inputs_names[i];
              in_out_map[op_type][2][j] = i;
            }
          }
        } else {
          for (size_t j = 0; j < inputs_names.size(); j++) {
            if (grad_inputs_names[i] == inputs_names[j]) {
              VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                      << " inputs: " << inputs_names[j] << " related to No."
                      << i
                      << " grad_inputs fwd inputs: " << grad_inputs_names[i];
              in_out_map[op_type][3][j] = i;
            }
          }
        }
      }
    }

    // Prepare pos map for grad attrs_
    for (size_t i = 0; i < grad_attrs_names.size(); i++) {
      auto end = std::find(attrs_names.begin(), attrs_names.end(),
                           grad_attrs_names[i]);
      PADDLE_ENFORCE_NE(end, attrs_names.end(),
                        paddle::platform::errors::NotFound(
                            "All Grad attrs should be one of forward attrs and "
                            "we got %s is not one of them, please check your "
                            "op and change to fit the rule.",
                            grad_attrs_names[i]));
      for (size_t j = 0; j < attrs_names.size(); j++) {
        if (grad_attrs_names[i] == attrs_names[j]) {
          VLOG(7) << " ==== Custom Operator: " << op_type << "'s No." << j
                  << " attrs: " << attrs_names[j] << " related to No." << i
                  << " grad_attrs: " << grad_attrs_names[i];
          in_out_map[op_type][4][j] = i;
        }
      }
    }
  }
}

static std::vector<paddle::any> CastAttrsToTragetType(
    const std::vector<paddle::any>& src,
    const std::vector<std::string>& attrs_names) {
  std::vector<paddle::any> res;
  PADDLE_ENFORCE_EQ(src.size(), attrs_names.size(),
                    paddle::platform::errors::InvalidArgument(
                        "We Expected same size of attrs and attrs_name list, "
                        "if u got this error indicate your custom op setting "
                        "%s attrs, but you just give %s",
                        attrs_names.size(), src.size()));
  for (size_t i = 0; i < src.size(); i++) {
    size_t end = attrs_names[i].find(": ");
    std::string type_name =
        attrs_names[i].substr(end + 2, attrs_names.size() - end - 2);
    if (type_name == "int") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32, other type is "
            "forbidden for now but we got %s. Check your code first please",
            i, src[i].type().name()));
      }
    } else if (type_name == "int64_t") {
      if (src[i].type() == typeid(bool)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<bool>(src[i])));
      } else if (src[i].type() == typeid(int)) {
        res.emplace_back(static_cast<int64_t>(paddle::any_cast<int>(src[i])));
      } else if (src[i].type() == typeid(int64_t)) {
        res.emplace_back(src[i]);
      } else {
        PADDLE_THROW(platform::errors::InvalidArgument(
            "Your No. %s attrs should only can be bool or int32 or int64_t, "
            "other type is forbidden for now but we got %s. Check your code "
            "first please",
            i, src[i].type().name()));
      }
    } else {
      res.emplace_back(src[i]);
    }
  }
  return res;
}

static PyObject* eager_api_run_costum_op(PyObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
  paddle::CustomOpKernelContext ctx =
      CastPyArg2CustomOpKernelContext(PyTuple_GET_ITEM(args, 0), 0);
  std::string op_type = CastPyArg2AttrString(PyTuple_GET_ITEM(args, 1), 1);
  bool trace_backward = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 2), 2);
  VLOG(7) << "Get things for python for Custom Op: " << op_type
          << ", trace_backward is: " << trace_backward;
  auto meta_info_map = egr::Controller::Instance().GetOpMetaInfoMap();
  PADDLE_ENFORCE_NE(meta_info_map.find(op_type), meta_info_map.end(),
                    paddle::platform::errors::NotFound(
                        "Can't find %s in Eager OpMetaInfoMap which should be "
                        "created by LoadOpMetaInfoAndRegisterOp, please make "
                        "sure you registered your op first and try again. ",
                        op_type));
  VLOG(7) << "Run Kernel of Custom Op: " << op_type;
  std::vector<paddle::any> res_attrs = CastAttrsToTragetType(
      ctx.Attrs(), paddle::framework::OpMetaInfoHelper::GetAttrs(
                       meta_info_map.at(op_type)[0]));
  ctx.EmplaceBackAttrs(res_attrs);
  const auto& vec_map = meta_info_map.at(op_type);
  (*paddle::framework::OpMetaInfoHelper::GetKernelFn(vec_map[0]))(&ctx);

  VLOG(7) << "Get AutogradMeta for inputs and outputs for Custom Op";
  std::vector<std::vector<egr::AutogradMeta*>> ins_auto_grad_metas;
  std::vector<std::vector<egr::AutogradMeta*>> outs_auto_grad_metas;
  VLOG(7) << "We got slot num of ins is: " << ctx.InputRange().size();
  ins_auto_grad_metas.resize(ctx.InputRange().size());
  VLOG(7) << "We got slot num of outs is: " << ctx.OutputRange().size();
  outs_auto_grad_metas.resize(ctx.OutputRange().size());
367

368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
  for (size_t i = 0; i < ctx.InputRange().size(); i++) {
    ins_auto_grad_metas[i] =
        egr::EagerUtils::nullable_autograd_meta(ctx.InputsBetween(
            ctx.InputRangeAt(i).first, ctx.InputRangeAt(i).second));
  }
  for (size_t i = 0; i < ctx.OutputRange().size(); i++) {
    outs_auto_grad_metas[i] =
        egr::EagerUtils::unsafe_autograd_meta(ctx.OutputsBetweeen(
            ctx.OutputRangeAt(i).first, ctx.OutputRangeAt(i).second));
  }
  bool require_any_grad = false;
  for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
    require_any_grad =
        require_any_grad || egr::EagerUtils::ComputeRequireGrad(
                                trace_backward, &(ins_auto_grad_metas[i]));
  }
  if (require_any_grad) {
    VLOG(6) << " Construct Grad for Custom Op: " << op_type;
    ConstructFwdAndBwdMap(vec_map, op_type);
    for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
      egr::EagerUtils::PassStopGradient(false, &(outs_auto_grad_metas[i]));
    }
    auto grad_node = std::make_shared<egr::RunCustomOpNode>(
        outs_auto_grad_metas.size(), ins_auto_grad_metas.size(), op_type);
    auto slot_map =
        egr::Controller::Instance().GetCustomEdgesSlotMap().at(op_type);
    // Prepare Grad outputs
    size_t no_grad_cnt = 0;
    for (size_t i = 0; i < ins_auto_grad_metas.size(); i++) {
397 398 399 400
      const std::vector<paddle::experimental::Tensor>& in_tensors =
          ctx.InputsBetween(ctx.InputRangeAt(i).first,
                            ctx.InputRangeAt(i).second);

401
      if (slot_map[0].find(i) != slot_map[0].end()) {
402
        grad_node->SetGradOutMeta(in_tensors, slot_map[0][i]);
403 404
        grad_node->AddEdges(&ins_auto_grad_metas[i], slot_map[0][i]);
      } else {
405
        grad_node->SetGradOutMeta(in_tensors,
406 407 408 409 410 411 412 413
                                  ins_auto_grad_metas.size() - 1 - no_grad_cnt);
        grad_node->AddEdges(&ins_auto_grad_metas[i],
                            ins_auto_grad_metas.size() - 1 - no_grad_cnt);
        no_grad_cnt++;
      }
    }
    // Prepare Grad inputs with grad of fwd outputs
    for (size_t i = 0; i < outs_auto_grad_metas.size(); i++) {
414 415 416 417
      const std::vector<paddle::experimental::Tensor>& out_tensors =
          ctx.OutputsBetweeen(ctx.OutputRangeAt(i).first,
                              ctx.OutputRangeAt(i).second);

418 419
      egr::EagerUtils::SetOutRankWithSlot(&(outs_auto_grad_metas[i]), i);
      egr::EagerUtils::SetHistory(&(outs_auto_grad_metas[i]), grad_node);
420 421
      grad_node->SetGradInMeta(out_tensors, i);
      egr::EagerUtils::CheckAndRetainGrad(out_tensors);
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    }

    // Prepare Grad inputs with fwd outputs
    for (auto it = slot_map[2].begin(); it != slot_map[2].end(); it++) {
      VLOG(7) << "Prepare fwd_outs: " << it->first
              << " to grad_inputs: " << it->second;
      grad_node->fwd_outs[it->second] =
          egr::RunCustomOpNode::ConstructTensorWrapper(
              ctx.OutputsBetweeen(ctx.OutputRangeAt(it->first).first,
                                  ctx.OutputRangeAt(it->first).second));
    }

    // Prepare Grad inputs with fwd inputs
    for (auto it = slot_map[3].begin(); it != slot_map[3].end(); it++) {
      VLOG(7) << "Prepare fwd_ins: " << it->first
              << " to grad_inputs: " << it->second;
      grad_node->fwd_ins[it->second] =
          egr::RunCustomOpNode::ConstructTensorWrapper(
              ctx.InputsBetween(ctx.InputRangeAt(it->first).first,
                                ctx.InputRangeAt(it->first).second));
    }

    auto attrs_names = paddle::framework::OpMetaInfoHelper::GetAttrs(
        meta_info_map.at(op_type)[1]);
    std::vector<paddle::any> attrs(attrs_names.size());
    // Prepare attrs for Grad node
    for (auto it = slot_map[4].begin(); it != slot_map[4].end(); it++) {
      VLOG(7) << "Prepare fwd attrs: " << it->first
              << " to grad_attrs: " << it->second;
      attrs[it->second] = res_attrs[it->first];
    }
    grad_node->SetAttrs(attrs);
  }
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
static PyObject* eager_api_sparse_coo_tensor(PyObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_indices = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 2), 2);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 3), 3);
  PADDLE_ENFORCE(non_zero_indices.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero indices must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero elements must be a DenseTensor."));
  auto dense_indices =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_indices.impl());
  auto dense_elements =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
  // TODO(zhangkaihuo): After create SparseTensor, call coalesced() to sort and
  // merge duplicate indices
  std::shared_ptr<phi::SparseCooTensor> coo_tensor =
      std::make_shared<phi::SparseCooTensor>(*dense_indices, *dense_elements,
                                             phi::make_ddim(dense_shape));
  paddle::experimental::Tensor tensor;
  tensor.set_impl(coo_tensor);
  auto name =
      egr::Controller::Instance().GenerateUniqueName("generated_tensor");
  tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
  autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_sparse_csr_tensor(PyObject* self, PyObject* args,
                                             PyObject* kwargs) {
  EAGER_TRY
  auto non_zero_crows = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 0), 0);
  auto non_zero_cols = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 1), 1);
  auto non_zero_elements = CastPyArg2Tensor(PyTuple_GET_ITEM(args, 2), 2);
  auto dense_shape = CastPyArg2VectorOfInt(PyTuple_GET_ITEM(args, 3), 3);
  auto stop_gradient = CastPyArg2AttrBoolean(PyTuple_GET_ITEM(args, 4), 4);
  PADDLE_ENFORCE(non_zero_crows.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the compressed non-zero rows must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_cols.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero cols must be a DenseTensor."));
  PADDLE_ENFORCE(non_zero_elements.is_dense_tensor(),
                 paddle::platform::errors::Fatal(
                     "the non-zero elements must be a DenseTensor."));

  auto dense_crows =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_crows.impl());
  auto dense_cols =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_cols.impl());
  auto dense_elements =
      std::dynamic_pointer_cast<phi::DenseTensor>(non_zero_elements.impl());
  std::shared_ptr<phi::SparseCsrTensor> csr_tensor =
      std::make_shared<phi::SparseCsrTensor>(*dense_crows, *dense_cols,
                                             *dense_elements,
                                             phi::make_ddim(dense_shape));
  paddle::experimental::Tensor tensor;
  tensor.set_impl(csr_tensor);
  auto name =
      egr::Controller::Instance().GenerateUniqueName("generated_tensor");
  tensor.set_name(name);
  auto autograd_meta = egr::EagerUtils::autograd_meta(&tensor);
  autograd_meta->SetStopGradient(static_cast<bool>(stop_gradient));
  if (!autograd_meta->GetMutableGradNode()) {
    VLOG(3) << "Tensor(" << name
            << ") have not GradNode, add GradNodeAccumulation for it.";
    autograd_meta->SetGradNode(
        std::make_shared<egr::GradNodeAccumulation>(autograd_meta));
  }
  return ToPyObject(tensor);
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
543 544 545 546 547 548 549 550 551 552 553 554 555 556
#if defined(PADDLE_WITH_CUDA)
static PyObject* eager_api_async_read(PyObject* self, PyObject* args,
                                      PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_read", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_read", "dst", args, 1, false);
  auto& index = GetTensorFromArgs("async_read", "index", args, 2, false);
  auto& buffer = GetTensorFromArgs("async_read", "buffer", args, 3, false);
  auto& offset = GetTensorFromArgs("async_read", "offset", args, 4, false);
  auto& count = GetTensorFromArgs("async_read", "count", args, 5, false);
  PADDLE_ENFORCE_EQ(
      src.is_gpu_pinned(), true,
      platform::errors::InvalidArgument("Required `src` device should be "
                                        "CUDAPinnedPlace, but received %d.",
557
                                        src.place()));
W
wanghuancoder 已提交
558 559 560 561
  PADDLE_ENFORCE_EQ(
      dst.is_gpu(), true,
      platform::errors::InvalidArgument(
          "Required `dst` device should be CUDAPlace, but received %d.",
562
          dst.place()));
W
wanghuancoder 已提交
563 564 565 566
  PADDLE_ENFORCE_EQ(
      index.is_cpu(), true,
      platform::errors::InvalidArgument(
          "Required `index` device should be CPUPlace, but received %d.",
567
          index.place()));
W
wanghuancoder 已提交
568 569 570 571
  PADDLE_ENFORCE_EQ(buffer.is_gpu_pinned(), true,
                    platform::errors::InvalidArgument(
                        "Required `buffer` device should be CUDAPinnedPlace, "
                        "but received %d.",
572
                        buffer.place()));
W
wanghuancoder 已提交
573 574 575 576
  PADDLE_ENFORCE_EQ(
      offset.is_cpu(), true,
      platform::errors::InvalidArgument(
          "Required `offset` device should be CPUPlace, but received %d.",
577
          offset.place()));
W
wanghuancoder 已提交
578 579 580 581
  PADDLE_ENFORCE_EQ(
      count.is_cpu(), true,
      platform::errors::InvalidArgument(
          "Required `count` device should be CPUPlace, but received %d.",
582
          count.place()));
W
wanghuancoder 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703

  auto& src_tensor = src;
  auto* dst_tensor = &dst;
  auto& index_tensor = index;
  auto* buffer_tensor = &buffer;
  auto& offset_tensor = offset;
  auto& count_tensor = count;
  auto* dst_data = dst_tensor->mutable_data<float>(dst.place());
  const auto& deviceId = paddle::platform::GetCurrentDeviceId();

  PADDLE_ENFORCE_EQ(src_tensor.dims().size(), dst_tensor->dims().size(),
                    platform::errors::InvalidArgument(
                        "`src` and `dst` should have same tensor shape, "
                        "except for the first dimension."));
  PADDLE_ENFORCE_EQ(src_tensor.dims().size(), buffer_tensor->dims().size(),
                    platform::errors::InvalidArgument(
                        "`src` and `buffer` should have same tensor shape, "
                        "except for the first dimension."));
  for (int i = 1; i < src_tensor.dims().size(); i++) {
    PADDLE_ENFORCE_EQ(src_tensor.dims()[i], dst_tensor->dims()[i],
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have the same tensor shape, "
                          "except for the first dimension."));
    PADDLE_ENFORCE_EQ(
        src_tensor.dims()[i], buffer_tensor->dims()[i],
        platform::errors::InvalidArgument(
            "`src` and `buffer` should have the same tensor shape, "
            "except for the first dimension."));
  }
  PADDLE_ENFORCE_EQ(index_tensor.dims().size(), 1,
                    platform::errors::InvalidArgument(
                        "`index` tensor should be one-dimensional."));

  auto stream =
      paddle::platform::stream::get_current_stream(deviceId)->raw_stream();

  int64_t numel = 0;  // total copy length
  int64_t copy_flag = offset_tensor.dims()[0];
  int64_t size = src_tensor.numel() / src_tensor.dims()[0];

  if (copy_flag != 0) {
    PADDLE_ENFORCE_EQ(offset_tensor.dims().size(), 1,
                      platform::errors::InvalidArgument(
                          "`offset` tensor should be one-dimensional."));
    PADDLE_ENFORCE_EQ(count_tensor.dims().size(), 1,
                      platform::errors::InvalidArgument(
                          "`count` tensor should be one-dimensional."));
    PADDLE_ENFORCE_EQ(offset_tensor.numel(), count_tensor.numel(),
                      platform::errors::InvalidArgument(
                          "`offset` and `count` tensor size dismatch."));
    auto* offset_data = offset_tensor.data<int64_t>();
    auto* count_data = count_tensor.data<int64_t>();
    for (int64_t i = 0; i < count_tensor.numel(); i++) {
      numel += count_data[i];
    }
    PADDLE_ENFORCE_LE(
        numel + index_tensor.numel(), buffer_tensor->dims()[0],
        platform::errors::InvalidArgument("Buffer tensor size is too small."));
    PADDLE_ENFORCE_LE(
        numel + index_tensor.numel(), dst_tensor->dims()[0],
        platform::errors::InvalidArgument("Target tensor size is too small."));

    int64_t src_offset, dst_offset = 0, c;
    auto* src_data = src_tensor.data<float>();
    for (int64_t i = 0; i < offset_tensor.numel(); i++) {
      src_offset = offset_data[i], c = count_data[i];
      PADDLE_ENFORCE_LE(
          src_offset + c, src_tensor.dims()[0],
          platform::errors::InvalidArgument("Invalid offset or count index."));
      PADDLE_ENFORCE_LE(
          dst_offset + c, dst_tensor->dims()[0],
          platform::errors::InvalidArgument("Invalid offset or count index."));
      cudaMemcpyAsync(dst_data + (dst_offset * size),
                      src_data + (src_offset * size), c * size * sizeof(float),
                      cudaMemcpyHostToDevice, stream);
      dst_offset += c;
    }
  } else {
    PADDLE_ENFORCE_LE(
        index_tensor.numel(), buffer_tensor->dims()[0],
        platform::errors::InvalidArgument("Buffer tensor size is too small."));
  }

  // Select the index data to the buffer
  auto index_select = [](const paddle::experimental::Tensor& src_tensor,
                         const paddle::experimental::Tensor& index_tensor,
                         paddle::experimental::Tensor* buffer_tensor) {
    auto* src_data = src_tensor.data<float>();
    auto* index_data = index_tensor.data<int64_t>();
    auto* buffer_data = buffer_tensor->data<float>();
    const int& slice_size = src_tensor.numel() / src_tensor.dims()[0];
    const int& copy_bytes = slice_size * sizeof(float);
    int64_t c = 0;
    for (int64_t i = 0; i < index_tensor.numel(); i++) {
      std::memcpy(buffer_data + c * slice_size,
                  src_data + index_data[i] * slice_size, copy_bytes);
      c += 1;
    }
  };
  index_select(src_tensor, index_tensor, buffer_tensor);

  // Copy the data to device memory
  cudaMemcpyAsync(dst_data + (numel * size), buffer_tensor->data<float>(),
                  index_tensor.numel() * size * sizeof(float),
                  cudaMemcpyHostToDevice, stream);
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}

static PyObject* eager_api_async_write(PyObject* self, PyObject* args,
                                       PyObject* kwargs) {
  EAGER_TRY
  auto& src = GetTensorFromArgs("async_write", "src", args, 0, false);
  auto& dst = GetTensorFromArgs("async_write", "dst", args, 1, false);
  auto& offset = GetTensorFromArgs("async_write", "offset", args, 2, false);
  auto& count = GetTensorFromArgs("async_write", "count", args, 3, false);
  PADDLE_ENFORCE_EQ(
      src.is_gpu(), true,
      platform::errors::InvalidArgument(
          "Required `src` device should be CUDAPlace, but received %d. ",
704
          src.place()));
W
wanghuancoder 已提交
705 706 707 708
  PADDLE_ENFORCE_EQ(dst.is_gpu_pinned(), true,
                    platform::errors::InvalidArgument(
                        "Required `dst` device should be CUDAPinnedPlace, "
                        "but received %d. ",
709
                        dst.place()));
W
wanghuancoder 已提交
710 711 712 713
  PADDLE_ENFORCE_EQ(
      offset.is_cpu(), true,
      platform::errors::InvalidArgument("Required `offset` device should "
                                        "be CPUPlace, but received %d. ",
714
                                        offset.place()));
W
wanghuancoder 已提交
715 716 717 718
  PADDLE_ENFORCE_EQ(
      count.is_cpu(), true,
      platform::errors::InvalidArgument(
          "Required `count` device should be CPUPlace, but received %d. ",
719
          count.place()));
W
wanghuancoder 已提交
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747

  // TODO(daisiming): In future, add index as arguments following
  // async_read.
  auto& src_tensor = src;
  auto* dst_tensor = &dst;
  auto& offset_tensor = offset;
  auto& count_tensor = count;
  const auto& deviceId = paddle::platform::GetCurrentDeviceId();

  PADDLE_ENFORCE_EQ(offset_tensor.dims().size(), 1,
                    platform::errors::InvalidArgument(
                        "`offset` tensor should be one-dimensional."));
  PADDLE_ENFORCE_EQ(count_tensor.dims().size(), 1,
                    platform::errors::InvalidArgument(
                        "`count` tensor should be one-dimensional."));
  PADDLE_ENFORCE_EQ(offset_tensor.numel(), count_tensor.numel(),
                    platform::errors::InvalidArgument(
                        "`offset` and `count` tensor size dismatch."));
  PADDLE_ENFORCE_EQ(src_tensor.dims().size(), dst_tensor->dims().size(),
                    platform::errors::InvalidArgument(
                        "`src` and `dst` should have the same tensor shape, "
                        "except for the first dimension."));
  for (int i = 1; i < src_tensor.dims().size(); i++) {
    PADDLE_ENFORCE_EQ(src_tensor.dims()[i], dst_tensor->dims()[i],
                      platform::errors::InvalidArgument(
                          "`src` and `dst` should have the same tensor shape, "
                          "except for the first dimension."));
  }
748

W
wanghuancoder 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774
  auto stream =
      paddle::platform::stream::get_current_stream(deviceId)->raw_stream();

  int64_t size = src_tensor.numel() / src_tensor.dims()[0];
  auto* src_data = src_tensor.data<float>();
  auto* dst_data = dst_tensor->data<float>();
  const int64_t* offset_data = offset_tensor.data<int64_t>();
  const int64_t* count_data = count_tensor.data<int64_t>();
  int64_t src_offset = 0, dst_offset, c;
  for (int64_t i = 0; i < offset_tensor.numel(); i++) {
    dst_offset = offset_data[i], c = count_data[i];
    PADDLE_ENFORCE_LE(
        src_offset + c, src_tensor.dims()[0],
        platform::errors::InvalidArgument("Invalid offset or count index"));
    PADDLE_ENFORCE_LE(
        dst_offset + c, dst_tensor->dims()[0],
        platform::errors::InvalidArgument("Invalid offset or count index"));
    cudaMemcpyAsync(dst_data + (dst_offset * size),
                    src_data + (src_offset * size), c * size * sizeof(float),
                    cudaMemcpyDeviceToHost, stream);
    src_offset += c;
  }
  Py_INCREF(Py_None);
  return Py_None;
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821

static PyObject* eager_api_to_uva_tensor(PyObject* self, PyObject* args,
                                         PyObject* kwargs) {
  EAGER_TRY
  VLOG(4) << "Running in eager_api_to_uva_tensor.";
  auto new_tensor = std::shared_ptr<paddle::experimental::Tensor>(
      new paddle::experimental::Tensor(
          egr::Controller::Instance().GenerateUniqueName()));
  PyObject* obj = PyTuple_GET_ITEM(args, 0);
  auto array = py::cast<py::array>(py::handle(obj));

  int device_id = 0;
  PyObject* Py_device_id = PyTuple_GET_ITEM(args, 1);
  if (Py_device_id) {
    device_id = CastPyArg2AttrLong(Py_device_id, 1);
  }

  if (py::isinstance<py::array_t<int32_t>>(array)) {
    SetUVATensorFromPyArray<int32_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int64_t>>(array)) {
    SetUVATensorFromPyArray<int64_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<float>>(array)) {
    SetUVATensorFromPyArray<float>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<double>>(array)) {
    SetUVATensorFromPyArray<double>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int8_t>>(array)) {
    SetUVATensorFromPyArray<int8_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<int16_t>>(array)) {
    SetUVATensorFromPyArray<int16_t>(new_tensor, array, device_id);
  } else if (py::isinstance<py::array_t<paddle::platform::float16>>(array)) {
    SetUVATensorFromPyArray<paddle::platform::float16>(new_tensor, array,
                                                       device_id);
  } else if (py::isinstance<py::array_t<bool>>(array)) {
    SetUVATensorFromPyArray<bool>(new_tensor, array, device_id);
  } else {
    // obj may be any type, obj.cast<py::array>() may be failed,
    // then the array.dtype will be string of unknown meaning.
    PADDLE_THROW(platform::errors::InvalidArgument(
        "Input object type error or incompatible array data type. "
        "tensor.set() supports array with bool, float16, float32, "
        "float64, int8, int16, int32, int64,"
        "please check your input or input array data type."));
  }

  return ToPyObject(*(new_tensor.get()));
  EAGER_CATCH_AND_THROW_RETURN_NULL
}
W
wanghuancoder 已提交
822
#endif
823

824
PyMethodDef variable_functions[] = {
825
    // TODO(jiabin): Remove scale when we have final state tests
826 827 828 829
    {"scale", (PyCFunction)(void (*)(void))eager_api_scale,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"run_backward", (PyCFunction)(void (*)(void))eager_api_run_backward,
     METH_VARARGS | METH_KEYWORDS, NULL},
830 831 832
    {"run_partial_grad",
     (PyCFunction)(void (*)(void))eager_api_run_partial_grad,
     METH_VARARGS | METH_KEYWORDS, NULL},
833 834
    {"_run_custom_op", (PyCFunction)(void (*)(void))eager_api_run_costum_op,
     METH_VARARGS | METH_KEYWORDS, NULL},
835 836
    {"tensor_copy", (PyCFunction)(void (*)(void))eager_api_tensor_copy,
     METH_VARARGS | METH_KEYWORDS, NULL},
837 838
    {"read_next_tensor_list",
     (PyCFunction)(void (*)(void))eager_api_read_next_tensor_list,
839
     METH_VARARGS | METH_KEYWORDS, NULL},
840 841 842 843 844 845 846
    /**sparse functions**/
    {"sparse_coo_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_coo_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"sparse_csr_tensor",
     (PyCFunction)(void (*)(void))eager_api_sparse_csr_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
847
/**sparse functions**/
W
wanghuancoder 已提交
848 849 850 851 852
#if defined(PADDLE_WITH_CUDA)
    {"async_read", (PyCFunction)(void (*)(void))eager_api_async_read,
     METH_VARARGS | METH_KEYWORDS, NULL},
    {"async_write", (PyCFunction)(void (*)(void))eager_api_async_write,
     METH_VARARGS | METH_KEYWORDS, NULL},
853 854
    {"to_uva_tensor", (PyCFunction)(void (*)(void))eager_api_to_uva_tensor,
     METH_VARARGS | METH_KEYWORDS, NULL},
W
wanghuancoder 已提交
855
#endif
856 857 858 859 860 861 862 863 864 865 866 867
    {NULL, NULL, 0, NULL}};

void BindFunctions(PyObject* module) {
  if (PyModule_AddFunctions(module, variable_functions) < 0) {
    PADDLE_THROW(platform::errors::Fatal(
        "Init Paddle erroe in BindFunctions(PyModule_AddFunctions)."));
    return;
  }
}

}  // namespace pybind
}  // namespace paddle