cpu_quantize_pass.cc 44.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15 16
#include "paddle/fluid/framework/ir/mkldnn/cpu_quantize_pass.h"

17
#include <sstream>
18 19
#include <utility>
#include <vector>
W
wanghuancoder 已提交
20

B
baoachun 已提交
21
#include "paddle/fluid/framework/ir/mkldnn/mkldnn_pass_util.h"
22
#include "paddle/fluid/platform/mkldnn_helper.h"
23 24 25 26 27 28
#include "paddle/fluid/string/pretty_log.h"

namespace paddle {
namespace framework {
namespace ir {

29
using EigenVectorArrayMap = Eigen::Map<Eigen::Array<double, Eigen::Dynamic, 1>>;
30 31
using EigenVectorArrayMapFloat =
    Eigen::Map<Eigen::Array<float, Eigen::Dynamic, 1>>;
32 33
using string::PrettyLogDetail;

34 35 36 37 38 39 40 41 42
namespace {

void UnlinkNodes(ir::Node* a, ir::Node* b) {
  a->outputs.erase(std::remove(a->outputs.begin(), a->outputs.end(), b),
                   a->outputs.end());
  b->inputs.erase(std::remove(b->inputs.begin(), b->inputs.end(), a),
                  b->inputs.end());
}

43
void MarkAndLogCannotQuantizeOp(Node* op, const char* details = nullptr) {
44 45 46
  std::stringstream msg_ss;
  msg_ss << "Cannot quantize operator " << op->Name()
         << " (type: " << op->Op()->Type() << ", id: " << op->id() << ").";
47
  if (details) msg_ss << " " << details;
48 49
  VLOG(2) << msg_ss.str().c_str();
  op->Op()->SetAttr("mkldnn_data_type", std::string("float32"));
50 51
}

52 53 54 55 56 57
void LogScaleIsMissingForVarName(const std::string& name) {
  VLOG(4) << "Quantization scale for the variable " << name << " is missing.";
}

void LogScaleIsMissingForVarNode(Node* node) {
  LogScaleIsMissingForVarName(node->Name());
58 59
}

60
void LogQuantizationDisabled(Node* op) {
61
  VLOG(2) << "Quantization skipped for operator " << op->Name()
62
          << " (type: " << op->Op()->Type() << ", id: " << op->id()
63
          << "). Attribute mkldnn_data_type != \"int8\".";
64 65
}

66 67
void LogQuantizedOpsCounter(const std::string& type,
                            const int counter,
68 69 70 71 72 73 74
                            const char* details = nullptr) {
  std::stringstream msg_ss;
  msg_ss << "---    quantized " << counter << " " << type << " ops";
  if (details) msg_ss << " " << details;
  PrettyLogDetail(msg_ss.str().c_str());
}

75 76 77 78
}  // namespace

enum { U8_MAX = 255, S8_MAX = 127 };

79 80 81 82 83
void CPUQuantizePass::QuantizeInput(Graph* g,
                                    Node* op,
                                    Node* input,
                                    std::string input_name,
                                    double scale_to_one,
84
                                    bool is_input_unsigned,
85 86
                                    std::string scale_attr_name,
                                    float shift,
87
                                    std::string shift_attr_name) const {
M
Michał Gallus 已提交
88 89 90
  auto inputs = op->Op()->InputNames();
  bool name_found =
      std::find(inputs.begin(), inputs.end(), input_name) != inputs.end();
91 92
  PADDLE_ENFORCE_EQ(name_found,
                    true,
93 94
                    platform::errors::InvalidArgument(
                        "Var(%s) isn't the input of the %s operator.",
95 96
                        input_name,
                        op->Op()->Type()));
97
  unsigned max = is_input_unsigned ? U8_MAX : S8_MAX;
98 99 100 101 102 103 104 105 106 107 108 109 110
  float scale = scale_to_one * max;

  // Create quantize output variable
  VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
  auto* quantize_out_node = g->CreateVarNode(&quantize_out_desc);

  // create a quantize op node
  OpDesc q_desc;
  q_desc.SetType("quantize");
  q_desc.SetInput("Input", std::vector<std::string>({input->Name()}));
  q_desc.SetOutput("Output",
                   std::vector<std::string>({quantize_out_node->Name()}));
  q_desc.SetAttr("Scale", scale);
111 112
  q_desc.SetAttr("Shift", shift);
  q_desc.SetAttr("is_negative_input", !is_input_unsigned);
113

Z
Zuza 已提交
114 115 116
  // fix to fc format error
  if (op->Op()->Type() == "fc" &&
      op->Op()->GetAttrIfExists<int>("in_num_col_dims") == 2) {
117 118 119
    q_desc.SetAttr(
        "output_format",
        Has("data_layout") ? Get<std::string>("data_layout") : "NCHW");
Z
Zuza 已提交
120
  } else {
121 122 123
    q_desc.SetAttr(
        "output_format",
        Has("data_layout") ? Get<std::string>("data_layout") : "NHWC");
Z
Zuza 已提交
124
  }
125 126 127 128 129 130 131 132 133 134 135 136 137
  auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

  // update op's input
  op->Op()->SetInput(input_name,
                     std::vector<std::string>({quantize_out_node->Name()}));

  // link quantize op
  UnlinkNodes(input, op);
  IR_NODE_LINK_TO(input, quantize_op);
  IR_NODE_LINK_TO(quantize_op, quantize_out_node);
  IR_NODE_LINK_TO(quantize_out_node, op);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
138
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
139 140
}

141 142 143
void CPUQuantizePass::QuantizeInputs(Graph* g,
                                     Node* op,
                                     std::string input_name,
144
                                     bool are_inputs_unsigned,
145 146
                                     std::string scale_attr_name,
                                     float shift,
147
                                     std::string shift_attr_name) const {
148
  auto inputs = op->inputs;
149
  auto output = op->outputs[0];
150 151
  PADDLE_ENFORCE_GE(inputs.size(),
                    1,
152 153
                    platform::errors::InvalidArgument(
                        "OP(%s)'s inputs(%d) must be equal or greater than 1.",
154 155 156 157
                        op->Name(),
                        inputs.size()));
  PADDLE_ENFORCE_EQ(op->outputs.size(),
                    1,
158
                    platform::errors::InvalidArgument(
159 160
                        "OP(%s)'s outputs(%d) must be equal to 1.",
                        op->Name(),
161
                        op->outputs.size()));
162 163 164 165 166 167 168 169

  // create a quantize op desc prototype
  OpDesc q_desc;
  q_desc.SetType("quantize");

  std::vector<Node*> quantize_out_nodes(inputs.size());
  std::vector<std::string> quantize_out_node_names(inputs.size());

170
  double scale_out = GetScaleValueForNode(output);
171
  unsigned max = are_inputs_unsigned ? U8_MAX : S8_MAX;
172
  float scale = scale_out * max;
173 174 175 176 177 178 179 180

  for (size_t i = 0; i < inputs.size(); i++) {
    // Create quantize output variable
    VarDesc quantize_out_desc(patterns::PDNodeName("quantize", "out"));
    quantize_out_nodes[i] = g->CreateVarNode(&quantize_out_desc);
    quantize_out_node_names[i] = quantize_out_nodes[i]->Name();

    q_desc.SetAttr("Scale", scale);
181
    q_desc.SetAttr("Shift", shift);
182 183 184
    q_desc.SetInput("Input", std::vector<std::string>({inputs[i]->Name()}));
    q_desc.SetOutput("Output",
                     std::vector<std::string>({quantize_out_node_names[i]}));
185
    q_desc.SetAttr("is_negative_input", !are_inputs_unsigned);
186 187 188 189 190 191 192 193 194 195 196 197 198
    auto quantize_op = g->CreateOpNode(&q_desc);  // OpDesc will be copied.

    // link quantize op
    UnlinkNodes(inputs[i], op);
    IR_NODE_LINK_TO(inputs[i], quantize_op);
    IR_NODE_LINK_TO(quantize_op, quantize_out_nodes[i]);
    IR_NODE_LINK_TO(quantize_out_nodes[i], op);
  }

  // update op's input
  op->Op()->SetInput(input_name, quantize_out_node_names);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
199
  if (!shift_attr_name.empty()) op->Op()->SetAttr(shift_attr_name, shift);
200 201
}

202 203 204
void CPUQuantizePass::DequantizeOutput(Graph* g,
                                       Node* op,
                                       Node* output,
205
                                       std::string output_name,
206 207
                                       double scale_to_one,
                                       bool is_unsigned,
208
                                       std::string scale_attr_name) const {
M
Michał Gallus 已提交
209 210 211
  auto outputs = op->Op()->OutputNames();
  bool name_found =
      std::find(outputs.begin(), outputs.end(), output_name) != outputs.end();
212 213
  PADDLE_ENFORCE_EQ(name_found,
                    true,
M
Michał Gallus 已提交
214
                    platform::errors::InvalidArgument(
215
                        "Var(%s) isn't the output of the %s operator.",
216 217
                        output_name,
                        op->Op()->Type()));
218 219 220 221 222 223 224 225 226 227 228 229 230 231
  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  // Create dequantize input variable
  VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
  auto* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);

  // create a dequantize op node for output.
  OpDesc deq_desc;
  deq_desc.SetType("dequantize");
  deq_desc.SetInput("Input",
                    std::vector<std::string>({dequantize_in_node->Name()}));
  deq_desc.SetOutput("Output", std::vector<std::string>({output->Name()}));
  deq_desc.SetAttr("Scale", scale);
232
  deq_desc.SetAttr("is_negative_input", !is_unsigned);
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
  auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

  // update op's output
  op->Op()->SetOutput(output_name,
                      std::vector<std::string>({dequantize_in_node->Name()}));

  // link dequantize op
  UnlinkNodes(op, output);
  IR_NODE_LINK_TO(op, dequantize_in_node);
  IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
  IR_NODE_LINK_TO(dequantize_op, output);

  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

P
Paulina Gacek 已提交
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
void CPUQuantizePass::DequantizeOutputs(Graph* g,
                                        Node* op,
                                        std::string output_name,
                                        double scale_to_one,
                                        bool is_unsigned,
                                        std::string scale_attr_name) const {
  auto outputs = op->outputs;
  PADDLE_ENFORCE_GE(outputs.size(),
                    1,
                    platform::errors::InvalidArgument(
                        "OP(%s)'s outputs(%d) must be equal or greater than 1.",
                        op->Name(),
                        outputs.size()));

  std::vector<std::string> quantize_in_node_names(outputs.size());

  unsigned max = is_unsigned ? U8_MAX : S8_MAX;
  float scale = scale_to_one * max;

  for (size_t i = 0; i < outputs.size(); i++) {
    // Create dequantize input variable
    VarDesc dequantize_in_desc(patterns::PDNodeName("dequantize", "in"));
    Node* dequantize_in_node = g->CreateVarNode(&dequantize_in_desc);
    quantize_in_node_names[i] = dequantize_in_node->Name();

    // create a dequantize op node for output.
    OpDesc deq_desc;
    deq_desc.SetType("dequantize");
    deq_desc.SetInput("Input",
                      std::vector<std::string>({quantize_in_node_names[i]}));
    deq_desc.SetOutput("Output",
                       std::vector<std::string>({outputs[i]->Name()}));
    deq_desc.SetAttr("Scale", scale);
    deq_desc.SetAttr("is_negative_input", !is_unsigned);
    auto dequantize_op = g->CreateOpNode(&deq_desc);  // OpDesc will be copied.

    // link dequantize op
    UnlinkNodes(op, outputs[i]);
    IR_NODE_LINK_TO(op, dequantize_in_node);
    IR_NODE_LINK_TO(dequantize_in_node, dequantize_op);
    IR_NODE_LINK_TO(dequantize_op, outputs[i]);
  }

  // update op's output
  op->Op()->SetOutput(output_name, quantize_in_node_names);
  if (!scale_attr_name.empty()) op->Op()->SetAttr(scale_attr_name, scale);
}

296 297 298
bool CPUQuantizePass::AreScalesPresentForVarNames(
    std::vector<std::string> names) const {
  bool present = true;
B
baoachun 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312
  if (var_quant_scales_->empty()) {
    auto& scales = Get<VarQuantScale>("quant_var_scales");
    for (auto name : names) {
      if (scales.find(name) == scales.end()) {
        present = false;
        LogScaleIsMissingForVarName(name);
      }
    }
  } else {
    for (auto name : names) {
      if (var_quant_scales_->find(name) == var_quant_scales_->end()) {
        present = false;
        LogScaleIsMissingForVarName(name);
      }
313 314 315 316 317
    }
  }
  return present;
}

318
bool CPUQuantizePass::AreScalesPresentForNodes(
319
    std::initializer_list<Node*> nodes) const {
320
  bool present = true;
B
baoachun 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334
  if (var_quant_scales_->empty()) {
    auto& scales = Get<VarQuantScale>("quant_var_scales");
    for (auto node : nodes) {
      if (scales.count(node->Name()) == 0) {
        present = false;
        LogScaleIsMissingForVarNode(node);
      }
    }
  } else {
    for (auto node : nodes) {
      if (var_quant_scales_->count(node->Name()) == 0) {
        present = false;
        LogScaleIsMissingForVarNode(node);
      }
335 336 337 338 339
    }
  }
  return present;
}

340
std::pair<bool, phi::DenseTensor> CPUQuantizePass::GetScaleDataByName(
341
    const std::string& name) const {
B
baoachun 已提交
342 343 344 345 346
  if (var_quant_scales_->empty()) {
    auto& scales = Get<VarQuantScale>("quant_var_scales");
    return scales.at(name);
  }
  return var_quant_scales_->at(name);
347 348
}

349
std::pair<bool, phi::DenseTensor> CPUQuantizePass::GetScaleDataForNode(
350
    const Node* node) const {
351 352 353
  return GetScaleDataByName(node->Name());
}

354 355
phi::DenseTensor CPUQuantizePass::GetScaleTensorByName(
    const std::string& name) const {
356
  return GetScaleDataByName(name).second;
357 358
}

359 360
phi::DenseTensor CPUQuantizePass::GetScaleTensorForNode(
    const Node* node) const {
361 362 363 364 365 366 367 368 369 370
  return GetScaleDataForNode(node).second;
}

double CPUQuantizePass::GetScaleValueForNode(const Node* node,
                                             bool* is_unsigned) const {
  auto scale_data = GetScaleDataForNode(node);
  if (is_unsigned != nullptr) *is_unsigned = scale_data.first;
  return scale_data.second.data<double>()[0];
}

371 372
bool CPUQuantizePass::IsOpDequantized(const Node* node) const {
  return node->Op()->Type() == "dequantize" ||
373
         platform::HasOpINT8DataType(node->Op());
374 375 376
}

bool CPUQuantizePass::IsOpQuantized(const Node* node) const {
377 378 379 380 381 382
  // return true only if all of outputs are ops and their are either quantize or
  // have int8 data type
  return all_of(node->outputs.begin(), node->outputs.end(), [](Node* output) {
    return (output->IsOp() && (output->Op()->Type() == "quantize" ||
                               platform::HasOpINT8DataType(output->Op())));
  });
383 384
}

B
baoachun 已提交
385
void CPUQuantizePass::GetQuantInfo(Graph* graph) const {
386 387
  GetInfoFromTheFirstOp(
      graph, "has_quant_info", "var_quant_scales", var_quant_scales_);
B
baoachun 已提交
388 389
}

390 391 392 393 394 395 396 397 398 399 400 401 402 403
void CPUQuantizePass::QuantizeConv(Graph* graph,
                                   bool with_residual_data) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::ConvResidual conv_pattern{pattern, name_scope_};
  conv_pattern(with_residual_data);

  int quantize_conv_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize conv2d op";
    GET_IR_NODE_FROM_SUBGRAPH(conv_op, conv_op, conv_pattern);

    // skip if should not be quantized
404
    if (!platform::HasOpINT8DataType(conv_op->Op())) {
405 406 407
      LogQuantizationDisabled(conv_op);
      return;
    }
408 409 410 411 412

    GET_IR_NODE_FROM_SUBGRAPH(conv_filter, conv_filter, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_input, conv_input, conv_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(conv_output, conv_output, conv_pattern);

413
    auto has_output_scale = AreScalesPresentForNodes({conv_output});
W
Wojciech Uss 已提交
414
    if (with_residual_data && !has_output_scale) {
415 416 417 418
      MarkAndLogCannotQuantizeOp(
          conv_op,
          "Conv op with ResidualData input cannot be quantized "
          "without output scale.");
W
Wojciech Uss 已提交
419 420 421
      return;
    }

422
    if (with_residual_data) {
423 424
      GET_IR_NODE_FROM_SUBGRAPH(
          conv_residual_data, conv_residual_data, conv_pattern);
425
      if (!AreScalesPresentForNodes(
426
              {conv_input, conv_filter, conv_residual_data})) {
427 428
        MarkAndLogCannotQuantizeOp(conv_op,
                                   "No scale available for the operator");
429
        return;
430
      }
431 432 433 434 435

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(conv_residual_data, &is_residual_unsigned);

436 437 438 439 440 441 442
      QuantizeInput(g,
                    conv_op,
                    conv_residual_data,
                    "ResidualData",
                    residual_scale,
                    is_residual_unsigned,
                    "Scale_in_eltwise");
443
    } else {
444
      if (!AreScalesPresentForNodes({conv_input, conv_filter})) {
445 446
        MarkAndLogCannotQuantizeOp(conv_op,
                                   "No scale available for the operator");
447
        return;
448
      }
449 450
    }

451 452
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(conv_input, &is_input_unsigned);
453 454 455 456 457 458 459
    QuantizeInput(g,
                  conv_op,
                  conv_input,
                  "Input",
                  input_scale,
                  is_input_unsigned,
                  "Scale_in");
460

461
    auto filter_scale_tensor = GetScaleTensorForNode(conv_filter);
462
    EigenVectorArrayMap eigen_tensor{filter_scale_tensor.data<double>(),
463
                                     filter_scale_tensor.numel()};
464 465 466 467 468 469 470 471 472 473

    // If the scale value of a weight is already multiplied by S8_MAX, it does
    // not need to be multiplied again
    if (std::find(change_weight_->begin(),
                  change_weight_->end(),
                  conv_filter->Name()) == change_weight_->end()) {
      eigen_tensor *= static_cast<double>(S8_MAX);
      change_weight_->push_back(conv_filter->Name());
    }

474 475 476 477 478 479
    std::vector<float> filter_scale{
        filter_scale_tensor.data<double>(),
        filter_scale_tensor.data<double>() + filter_scale_tensor.numel()};

    conv_op->Op()->SetAttr("Scale_weights", filter_scale);

480
    // if quantization scale is missing for output tensor, return fp32 data
W
Wojciech Uss 已提交
481
    if (has_output_scale) {
482 483 484
      bool is_output_unsigned{false};
      auto output_scale =
          GetScaleValueForNode(conv_output, &is_output_unsigned);
485 486 487 488 489 490 491
      DequantizeOutput(g,
                       conv_op,
                       conv_output,
                       "Output",
                       output_scale,
                       is_output_unsigned,
                       "Scale_out");
492 493 494
    } else {
      conv_op->Op()->SetAttr("force_fp32_output", true);
    }
495

496
    // change threshold in bounded ReLu
497 498
    if (conv_op->Op()->GetAttrIfExists<std::string>("fuse_activation") ==
        "relu6") {
499
      float scale_out =
R
Ruibiao Chen 已提交
500
          PADDLE_GET_CONST(float, conv_op->Op()->GetAttr("Scale_out"));
501
      float threshold =
R
Ruibiao Chen 已提交
502
          PADDLE_GET_CONST(float, conv_op->Op()->GetAttr("fuse_alpha"));
503
      conv_op->Op()->SetAttr("fuse_alpha", scale_out * threshold);
504 505
    }

506 507 508 509 510 511
    ++quantize_conv_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_conv_count);

512
  LogQuantizedOpsCounter(
513 514
      "conv2d",
      quantize_conv_count,
515
      ((with_residual_data) ? "with residual connection" : ""));
516 517
}

518
void CPUQuantizePass::QuantizeFc(Graph* graph, bool with_residual_data) const {
M
Michał Gallus 已提交
519 520 521
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::FCMKLDNN fc_pattern{pattern, name_scope_};
522
  fc_pattern(with_residual_data);
M
Michał Gallus 已提交
523 524 525 526

  int quantize_fc_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
527 528
    VLOG(4) << "Quantize fc op " << (with_residual_data ? "with" : "without")
            << " residual data";
M
Michał Gallus 已提交
529 530 531
    GET_IR_NODE_FROM_SUBGRAPH(fc, fc, fc_pattern);

    // skip if should not be quantized
532
    if (!platform::HasOpINT8DataType(fc->Op())) {
533 534 535
      LogQuantizationDisabled(fc);
      return;
    }
536

537
    if (!fc->Op()->GetAttrIfExists<bool>("use_mkldnn")) {
538
      MarkAndLogCannotQuantizeOp(fc, "use_mkldnn attribute set to false");
M
Michał Gallus 已提交
539
      return;
540
    }
M
Michał Gallus 已提交
541 542 543 544 545

    GET_IR_NODE_FROM_SUBGRAPH(weights, weights, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(input, input, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(output, output, fc_pattern);

546
    if (!AreScalesPresentForNodes({input, weights})) {
547
      MarkAndLogCannotQuantizeOp(fc, "No scale available for the operator");
548 549
      return;
    }
550

551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
    if (with_residual_data) {
      GET_IR_NODE_FROM_SUBGRAPH(residual_data, residual_data, fc_pattern);
      if (!AreScalesPresentForNodes({residual_data})) {
        MarkAndLogCannotQuantizeOp(fc, "No scale available for the operator");
        return;
      }

      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(residual_data, &is_residual_unsigned);

      QuantizeInput(g,
                    fc,
                    residual_data,
                    "ResidualData",
                    residual_scale,
                    is_residual_unsigned,
                    "Scale_in_eltwise");
    }

571 572
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(input, &is_input_unsigned);
573 574
    QuantizeInput(
        g, fc, input, "Input", input_scale, is_input_unsigned, "Scale_in");
M
Michał Gallus 已提交
575

576
    auto weight_scale_tensor = GetScaleTensorForNode(weights);
M
Michał Gallus 已提交
577
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
578
                                     weight_scale_tensor.numel()};
M
Michał Gallus 已提交
579 580 581 582 583 584 585
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> filter_scale{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    fc->Op()->SetAttr("Scale_weights", filter_scale);

586
    // if quantization scale is missing for output tensor, return fp32 data
587
    if (AreScalesPresentForNodes({output})) {
588 589
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(output, &is_output_unsigned);
590 591
      DequantizeOutput(
          g, fc, output, "Out", output_scale, is_output_unsigned, "Scale_out");
592 593 594
    } else {
      fc->Op()->SetAttr("force_fp32_output", true);
    }
M
Michał Gallus 已提交
595 596 597 598 599 600

    ++quantize_fc_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_fc_count);
601 602 603
  LogQuantizedOpsCounter("fc",
                         quantize_fc_count,
                         with_residual_data ? "with residual connection" : "");
M
Michał Gallus 已提交
604 605
}

606 607 608 609 610 611 612 613 614 615 616 617 618
void CPUQuantizePass::QuantizePool(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Pool pool_pattern{pattern, name_scope_};
  pool_pattern();

  int quantize_pool_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize pool2d op";
    GET_IR_NODE_FROM_SUBGRAPH(pool_op, pool_op, pool_pattern);

    // skip if should not be quantized
619
    if (!platform::HasOpINT8DataType(pool_op->Op())) {
620 621 622
      LogQuantizationDisabled(pool_op);
      return;
    }
623 624 625 626

    GET_IR_NODE_FROM_SUBGRAPH(pool_input, pool_input, pool_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(pool_output, pool_output, pool_pattern);

627
    if (!AreScalesPresentForNodes({pool_input, pool_output})) {
628 629
      MarkAndLogCannotQuantizeOp(pool_op,
                                 "No scale available for the operator");
630 631
      return;
    }
632

633 634
    bool is_input_unsigned{false};
    auto input_scale = GetScaleValueForNode(pool_input, &is_input_unsigned);
635 636
    QuantizeInput(g, pool_op, pool_input, "X", input_scale, is_input_unsigned);

637 638
    bool is_output_unsigned{false};
    auto output_scale = GetScaleValueForNode(pool_output, &is_output_unsigned);
639 640
    DequantizeOutput(
        g, pool_op, pool_output, "Out", output_scale, is_output_unsigned);
641 642 643 644 645 646

    ++quantize_pool_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_pool_count);
647
  LogQuantizedOpsCounter("pool2d", quantize_pool_count);
648 649
}

650 651 652 653 654 655 656 657 658 659 660 661 662
void CPUQuantizePass::QuantizeConcat(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::Concat concat_pattern{pattern, name_scope_};
  concat_pattern();

  int quantize_concat_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize concat op";
    GET_IR_NODE_FROM_SUBGRAPH(concat_op, concat_op, concat_pattern);

    // skip if should not be quantized
663
    if (!platform::HasOpINT8DataType(concat_op->Op())) {
664 665 666
      LogQuantizationDisabled(concat_op);
      return;
    }
667

668 669 670 671 672 673 674 675 676 677 678 679 680 681
    bool are_all_inputs_unsigned{true};
    // if all inputs were unsigned, then the output was set to unsigned
    // during the scale calculation step
    auto inputs = concat_op->inputs;
    for (size_t i = 0; i < inputs.size(); i++) {
      if (AreScalesPresentForVarNames({inputs[i]->Name()})) {
        auto scale_data = GetScaleDataByName(inputs[i]->Name());
        if (scale_data.first == false) {
          are_all_inputs_unsigned = false;
          break;
        }
      }
    }

682 683
    GET_IR_NODE_FROM_SUBGRAPH(concat_out, concat_out, concat_pattern);

684
    if (!AreScalesPresentForNodes({concat_out})) {
685 686
      MarkAndLogCannotQuantizeOp(concat_op,
                                 "No scale available for the operator");
687 688
      return;
    }
689

690
    auto output_scale = GetScaleValueForNode(concat_out);
691

692
    QuantizeInputs(g, concat_op, "X", are_all_inputs_unsigned);
693

694 695
    DequantizeOutput(
        g, concat_op, concat_out, "Out", output_scale, are_all_inputs_unsigned);
696 697 698 699 700
    ++quantize_concat_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_concat_count);
701
  LogQuantizedOpsCounter("concat", quantize_concat_count);
702 703
}

704 705 706 707 708 709 710 711 712 713 714 715 716
void CPUQuantizePass::QuantizePriorBox(Graph* graph) const {
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
  patterns::PriorBox prior_box_pattern{pattern, name_scope_};
  prior_box_pattern();

  int quantize_prior_box_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize prior_box op";
    GET_IR_NODE_FROM_SUBGRAPH(prior_box_op, prior_box_op, prior_box_pattern);

    // skip if should not be quantized
717
    if (!platform::HasOpINT8DataType(prior_box_op->Op())) {
718 719 720
      LogQuantizationDisabled(prior_box_op);
      return;
    }
721

722 723
    GET_IR_NODE_FROM_SUBGRAPH(
        prior_box_input, prior_box_input, prior_box_pattern);
724

725
    if (!AreScalesPresentForNodes({prior_box_input})) {
726 727
      MarkAndLogCannotQuantizeOp(prior_box_op,
                                 "No scale available for the operator");
728 729
      return;
    }
730

731 732 733
    bool is_input_unsigned{false};
    auto input_scale =
        GetScaleValueForNode(prior_box_input, &is_input_unsigned);
734 735 736 737 738
    QuantizeInput(g,
                  prior_box_op,
                  prior_box_input,
                  "Input",
                  input_scale,
739 740 741 742 743 744 745
                  is_input_unsigned);

    ++quantize_prior_box_count;
  };

  gpd(graph, handler);
  AddStatis(quantize_prior_box_count);
746
  LogQuantizedOpsCounter("prior_box", quantize_prior_box_count);
747 748
}

749 750 751
void CPUQuantizePass::QuantizeImmutable(Graph* graph,
                                        const std::string& immutable_type,
                                        const std::string& input_name) const {
752 753
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
754 755
  patterns::Immutable immutable_pattern{pattern, name_scope_};
  immutable_pattern(immutable_type, input_name);
756

757
  int quantize_immutable_count = 0;
758 759
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
760 761
    VLOG(4) << "Quantize " + immutable_type + " op";
    GET_IR_NODE_FROM_SUBGRAPH(immutable_op, immutable_op, immutable_pattern);
762 763

    // skip if should not be quantized
764 765
    if (!platform::HasOpINT8DataType(immutable_op->Op())) {
      LogQuantizationDisabled(immutable_op);
766 767
      return;
    }
768 769 770
    GET_IR_NODE_FROM_SUBGRAPH(prev_op, prev_op, immutable_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(immutable_in, immutable_in, immutable_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(immutable_out, immutable_out, immutable_pattern);
771

772
    // skip if prev op and next op is not quantized
773 774
    if (!IsOpDequantized(prev_op) && !IsOpQuantized(immutable_out)) {
      MarkAndLogCannotQuantizeOp(immutable_op,
775
                                 "No other quantizable operators nearby");
776 777 778
      return;
    }

779 780 781 782 783 784 785
    // skip if the dtype of immutable_in is not float32
    auto dtype = immutable_in->Var()->GetDataType();
    if (dtype != proto::VarType::FP32) {
      MarkAndLogCannotQuantizeOp(immutable_op, "The input dtype is not float.");
      return;
    }

786 787
    if (!AreScalesPresentForNodes({immutable_out})) {
      MarkAndLogCannotQuantizeOp(immutable_op,
788
                                 "No scale available for the operator");
789
      return;
790
    }
791

792
    bool is_input_unsigned{false};
793 794 795 796 797 798 799 800
    auto input_scale = GetScaleValueForNode(immutable_out, &is_input_unsigned);

    QuantizeInput(g,
                  immutable_op,
                  immutable_in,
                  input_name,
                  input_scale,
                  is_input_unsigned);
801

802 803
    bool is_output_unsigned{false};
    auto output_scale =
804
        GetScaleValueForNode(immutable_out, &is_output_unsigned);
P
Paulina Gacek 已提交
805 806 807 808 809 810 811 812 813 814 815
    if (immutable_type == "split") {  // ops with multiple outputs
      DequantizeOutputs(
          g, immutable_op, "Out", output_scale, is_output_unsigned);
    } else {
      DequantizeOutput(g,
                       immutable_op,
                       immutable_out,
                       "Out",
                       output_scale,
                       is_output_unsigned);
    }
816
    ++quantize_immutable_count;
817 818 819
  };

  gpd(graph, handler);
820 821
  AddStatis(quantize_immutable_count);
  LogQuantizedOpsCounter(immutable_type, quantize_immutable_count);
Z
Zuza 已提交
822 823
}

824
void CPUQuantizePass::QuantizeMatmul(Graph* graph, bool with_residual) const {
825 826
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
827
  patterns::MatmulWithInputOps matmul_pattern{pattern, name_scope_};
828
  matmul_pattern(with_residual);
829 830 831 832 833 834 835 836

  int quantize_matmul_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize matmul op";
    GET_IR_NODE_FROM_SUBGRAPH(matmul_op, matmul_op, matmul_pattern);

    // skip if should not be quantized
837
    if (!platform::HasOpINT8DataType(matmul_op->Op())) {
838
      LogQuantizationDisabled(matmul_op);
839 840 841 842 843 844
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_x, prev_op_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(prev_op_y, prev_op_y, matmul_pattern);

    // skip if prev ops are not quantized
845
    if (!IsOpDequantized(prev_op_x) && !IsOpDequantized(prev_op_y)) {
846 847
      MarkAndLogCannotQuantizeOp(matmul_op,
                                 "No other quantizable operators nearby");
848 849 850 851 852 853
      return;
    }
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_x, matmul_in_x, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_in_y, matmul_in_y, matmul_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(matmul_out, matmul_out, matmul_pattern);

854 855 856 857 858 859 860 861 862
    auto has_output_scale = AreScalesPresentForNodes({matmul_out});
    if (with_residual && !has_output_scale) {
      MarkAndLogCannotQuantizeOp(
          matmul_op,
          "Matmul op with ResidualData input cannot be quantized "
          "without output scale.");
      return;
    }

863
    if (!AreScalesPresentForNodes({matmul_in_x, matmul_in_y})) {
864 865
      MarkAndLogCannotQuantizeOp(matmul_op,
                                 "No scale available for the operator");
866
      return;
867
    }
868

869 870 871
    bool is_x_unsigned{false}, is_y_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(matmul_in_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(matmul_in_y, &is_y_unsigned);
872 873
    PADDLE_ENFORCE_EQ(is_x_unsigned,
                      is_y_unsigned,
874 875 876 877
                      platform::errors::InvalidArgument(
                          "Matmul inputs should have the same "
                          "attribute of signed/unsigned, but they "
                          "are different: x(%d), y(%d).",
878 879
                          is_x_unsigned,
                          is_y_unsigned));
880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901

    if (with_residual) {
      GET_IR_NODE_FROM_SUBGRAPH(
          matmul_residual_data, matmul_residual_data, matmul_pattern);
      if (!AreScalesPresentForNodes({matmul_residual_data})) {
        MarkAndLogCannotQuantizeOp(matmul_op,
                                   "No scale available for the operator");
        return;
      }
      bool is_residual_unsigned{false};
      auto residual_scale =
          GetScaleValueForNode(matmul_residual_data, &is_residual_unsigned);

      QuantizeInput(g,
                    matmul_op,
                    matmul_residual_data,
                    "ResidualData",
                    residual_scale,
                    is_residual_unsigned,
                    "Scale_in_eltwise");
    }

902 903 904 905 906 907
    QuantizeInput(g,
                  matmul_op,
                  matmul_in_x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
908
                  "Scale_x");
909 910 911 912 913 914
    QuantizeInput(g,
                  matmul_op,
                  matmul_in_y,
                  "Y",
                  input_y_scale,
                  is_y_unsigned,
915 916
                  "Scale_y");

917
    // if quantization scale is missing for output tensor, return fp32 data
918
    if (AreScalesPresentForNodes({matmul_out})) {
919 920
      bool is_output_unsigned{false};
      auto output_scale = GetScaleValueForNode(matmul_out, &is_output_unsigned);
921 922 923 924 925 926 927
      DequantizeOutput(g,
                       matmul_op,
                       matmul_out,
                       "Out",
                       output_scale,
                       is_output_unsigned,
                       "Scale_out");
928 929 930
    } else {
      matmul_op->Op()->SetAttr("force_fp32_output", true);
    }
931 932 933 934 935

    ++quantize_matmul_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_matmul_count);
936 937 938
  LogQuantizedOpsCounter("matmul",
                         quantize_matmul_count,
                         (with_residual ? "with residual connection" : ""));
939 940
}

Z
Zuza 已提交
941
void CPUQuantizePass::QuantizeElementwise(
942
    Graph* graph, const std::string& elementwise_type) const {
943 944
  GraphPatternDetector gpd;
  auto pattern = gpd.mutable_pattern();
945
  patterns::ElementwiseOp elementwise_pattern{pattern, name_scope_};
946

947
  elementwise_pattern(elementwise_type);
948

Z
Zuza 已提交
949
  int quantize_elementwise_count = 0;
950 951
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
Z
Zuza 已提交
952
    VLOG(4) << "Quantize " + elementwise_type + " op";
953 954
    GET_IR_NODE_FROM_SUBGRAPH(
        elementwise_op, elementwise_op, elementwise_pattern);
955 956

    // skip if should not be quantized
Z
Zuza 已提交
957 958
    if (!platform::HasOpINT8DataType(elementwise_op->Op())) {
      LogQuantizationDisabled(elementwise_op);
959 960 961
      return;
    }

962 963
    auto x_name = elementwise_op->Op()->Input("X");
    auto y_name = elementwise_op->Op()->Input("Y");
964
    Node *elementwise_x{nullptr}, *elementwise_y{nullptr};
965 966 967 968 969 970 971 972 973

    for (auto& input : elementwise_op->inputs) {
      if (input->Name() == x_name[0]) elementwise_x = input;
      if (input->Name() == y_name[0]) elementwise_y = input;
    }
    if (!elementwise_x || !elementwise_y) {
      return;
    }

974 975
    GET_IR_NODE_FROM_SUBGRAPH(
        elementwise_out, elementwise_out, elementwise_pattern);
976

977
    if (!AreScalesPresentForNodes(
Z
Zuza 已提交
978
            {elementwise_x, elementwise_y, elementwise_out})) {
979 980
      MarkAndLogCannotQuantizeOp(elementwise_op,
                                 "No scale available for the operator");
981 982 983 984
      return;
    }

    bool is_x_unsigned{false}, is_y_unsigned{false};
Z
Zuza 已提交
985 986
    auto input_x_scale = GetScaleValueForNode(elementwise_x, &is_x_unsigned);
    auto input_y_scale = GetScaleValueForNode(elementwise_y, &is_y_unsigned);
987 988 989

    // TODO(sfraczek): add support for different signness
    if (is_x_unsigned != is_y_unsigned) {
990 991
      MarkAndLogCannotQuantizeOp(
          elementwise_op, "Elementwise inputs must be of the same type.");
992 993 994
      return;
    }

995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008
    QuantizeInput(g,
                  elementwise_op,
                  elementwise_x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
                  "Scale_x");
    QuantizeInput(g,
                  elementwise_op,
                  elementwise_y,
                  "Y",
                  input_y_scale,
                  is_y_unsigned,
                  "Scale_y");
1009

1010 1011
    bool is_output_unsigned{false};
    auto output_scale =
Z
Zuza 已提交
1012
        GetScaleValueForNode(elementwise_out, &is_output_unsigned);
1013

1014 1015 1016 1017 1018 1019 1020
    DequantizeOutput(g,
                     elementwise_op,
                     elementwise_out,
                     "Out",
                     output_scale,
                     is_output_unsigned,
                     "Scale_out");
1021

Z
Zuza 已提交
1022
    ++quantize_elementwise_count;
1023 1024
  };
  gpd(graph, handler);
Z
Zuza 已提交
1025
  AddStatis(quantize_elementwise_count);
1026
  LogQuantizedOpsCounter(elementwise_type, quantize_elementwise_count);
1027 1028
}

1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050
void CPUQuantizePass::QuantizeFusionGru(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::FusionGru pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fusion_gru op";
    GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(op->Op())) {
      LogQuantizationDisabled(op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(out, out, pattern);

1051
    if (!AreScalesPresentForNodes({x, weight_x})) {
1052
      MarkAndLogCannotQuantizeOp(op, "No scale available for the operator");
1053 1054 1055 1056 1057 1058 1059 1060 1061
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

1062 1063 1064 1065 1066 1067 1068 1069 1070
    QuantizeInput(g,
                  op,
                  x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
                  "Scale_data",
                  input_x_shift,
                  "Shift_data");
1071 1072 1073

    auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
1074
                                     weight_scale_tensor.numel()};
1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> scale_weights{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    op->Op()->SetAttr("Scale_weights", scale_weights);
    // return fp32 data
    op->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
1088
  LogQuantizedOpsCounter("fusion_gru", quantize_count);
1089 1090
}

1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
void CPUQuantizePass::QuantizeMultiGru(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::MultiGru pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize multi_gru op";
    GET_IR_NODE_FROM_SUBGRAPH(gru, gru, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(gru->Op())) {
      LogQuantizationDisabled(gru);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(wx, wx, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(h, h, pattern);

    auto wx_names = gru->Op()->Input("WeightX");
    if (!AreScalesPresentForNodes({x}) ||
        !AreScalesPresentForVarNames(wx_names)) {
1115
      MarkAndLogCannotQuantizeOp(gru, "No scale available for the operator");
1116 1117 1118 1119 1120 1121 1122 1123 1124
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

1125 1126 1127 1128 1129 1130 1131 1132 1133
    QuantizeInput(g,
                  gru,
                  x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
                  "Scale_data",
                  input_x_shift,
                  "Shift_data");
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144

    auto* scope = param_scope();
    int wx_size = wx_names.size();
    std::vector<std::string> w_scale_var_names;
    for (int i = 0; i < wx_size; ++i) {
      auto scale_tensor_src = GetScaleTensorByName(wx_names[i]);
      EigenVectorArrayMap eigen_tensor_src{scale_tensor_src.data<double>(),
                                           scale_tensor_src.numel()};

      VarDesc scale_var_desc(patterns::PDNodeName("multi_gru", "w_scale"));

1145
      scale_var_desc.SetShape(phi::vectorize(scale_tensor_src.dims()));
1146 1147 1148 1149 1150 1151
      scale_var_desc.SetDataType(proto::VarType::FP32);
      scale_var_desc.SetLoDLevel(scale_tensor_src.lod().size());
      scale_var_desc.SetPersistable(true);
      auto* w_scale_node = g->CreateVarNode(&scale_var_desc);

      auto* w_scale_tensor_dst =
1152
          scope->Var(w_scale_node->Name())->GetMutable<phi::DenseTensor>();
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171
      w_scale_tensor_dst->Resize(scale_tensor_src.dims());
      auto* dst_data =
          w_scale_tensor_dst->mutable_data<float>(platform::CPUPlace());
      EigenVectorArrayMapFloat eigen_tensor_dst{dst_data,
                                                w_scale_tensor_dst->numel()};
      eigen_tensor_dst =
          eigen_tensor_src.cast<float>() * static_cast<float>(S8_MAX);
      w_scale_var_names.push_back(w_scale_node->Name());
      IR_NODE_LINK_TO(w_scale_node, gru);
    }

    gru->Op()->SetInput("Scale_weights", w_scale_var_names);
    // return fp32 data
    gru->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
1172
  LogQuantizedOpsCounter("multi_gru", quantize_count);
1173 1174
}

1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199
void CPUQuantizePass::QuantizeFusionLSTM(Graph* graph) const {
  GraphPatternDetector gpd;
  patterns::FusionLSTM pattern{gpd.mutable_pattern(), name_scope_};
  pattern();

  int quantize_count = 0;
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
    VLOG(4) << "Quantize fusion_lstm op";
    GET_IR_NODE_FROM_SUBGRAPH(op, op, pattern);

    // skip if should not be quantized
    if (!platform::HasOpINT8DataType(op->Op())) {
      LogQuantizationDisabled(op);
      return;
    }

    GET_IR_NODE_FROM_SUBGRAPH(x, x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_h, weight_h, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(weight_x, weight_x, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(hidden, hidden, pattern);
    GET_IR_NODE_FROM_SUBGRAPH(cell, cell, pattern);

    // Starting from here there maybe issues
    if (!AreScalesPresentForNodes({x, weight_x})) {
1200
      MarkAndLogCannotQuantizeOp(op, "No scale available for the operator");
1201 1202 1203 1204 1205 1206 1207 1208 1209
      return;
    }

    bool is_x_unsigned{false};
    auto input_x_scale = GetScaleValueForNode(x, &is_x_unsigned);

    double input_x_shift{128.};
    if (is_x_unsigned) input_x_shift = 0.;

1210 1211 1212 1213 1214 1215 1216 1217 1218
    QuantizeInput(g,
                  op,
                  x,
                  "X",
                  input_x_scale,
                  is_x_unsigned,
                  "Scale_data",
                  input_x_shift,
                  "Shift_data");
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235

    auto weight_scale_tensor = GetScaleTensorForNode(weight_x);
    EigenVectorArrayMap eigen_tensor{weight_scale_tensor.data<double>(),
                                     weight_scale_tensor.numel()};
    eigen_tensor *= static_cast<double>(S8_MAX);
    std::vector<float> scale_weights{
        weight_scale_tensor.data<double>(),
        weight_scale_tensor.data<double>() + weight_scale_tensor.numel()};

    op->Op()->SetAttr("Scale_weights", scale_weights);
    // return fp32 data
    op->Op()->SetAttr("force_fp32_output", true);

    ++quantize_count;
  };
  gpd(graph, handler);
  AddStatis(quantize_count);
1236
  LogQuantizedOpsCounter("fusion_lstm", quantize_count);
1237 1238
}

1239
void CPUQuantizePass::ApplyImpl(ir::Graph* graph) const {
1240
  VLOG(3) << "Quantizing the graph.";
1241 1242
  PADDLE_ENFORCE_NOT_NULL(
      graph, platform::errors::InvalidArgument("Graph cannot be nullptr."));
1243
  FusePassBase::Init(name_scope_, graph);
1244

1245 1246 1247
  PADDLE_ENFORCE_NOT_NULL(
      param_scope(),
      platform::errors::InvalidArgument("Scope cannot be nullptr."));
1248

B
baoachun 已提交
1249
  GetQuantInfo(graph);
1250 1251 1252
  QuantizeConv(graph, false /* with_residual_data */);
  QuantizeConv(graph, true /* with_residual_data */);
  QuantizePool(graph);
1253
  QuantizeConcat(graph);
1254
  QuantizePriorBox(graph);
1255 1256
  QuantizeFc(graph, false /* with_residual_data */);
  QuantizeFc(graph, true /* with_residual_data */);
1257 1258
  QuantizeMatmul(graph, false /* with_residual_data */);
  QuantizeMatmul(graph, true /* with_residual_data */);
1259 1260 1261 1262 1263
  QuantizeImmutable(graph, "reshape2", "X");
  QuantizeImmutable(graph, "transpose2", "X");
  QuantizeImmutable(graph, "slice", "Input");
  QuantizeImmutable(graph, "nearest_interp", "X");
  QuantizeImmutable(graph, "nearest_interp_v2", "X");
P
Paulina Gacek 已提交
1264
  QuantizeImmutable(graph, "split", "X");
Z
Zuza 已提交
1265 1266
  QuantizeElementwise(graph, "elementwise_add");
  QuantizeElementwise(graph, "elementwise_mul");
1267
  QuantizeElementwise(graph, "elementwise_sub");
1268
  QuantizeFusionGru(graph);
1269
  QuantizeMultiGru(graph);
1270
  QuantizeFusionLSTM(graph);
1271 1272 1273 1274 1275 1276 1277 1278
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(cpu_quantize_pass, paddle::framework::ir::CPUQuantizePass)
    .RequirePassAttr("quant_var_scales");