qat.py 28.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

G
guofei 已提交
15
import collections
16 17 18
import logging
import numpy as np
import sys
19
import os
20 21
import warnings

22
import paddle
23
import paddle.nn as nn
24
import paddle.nn.quant.quant_layers as quant_layers
25
from paddle.fluid import dygraph, core, framework, unique_name
26
from paddle.fluid.framework import IrGraph
27
from paddle.fluid.executor import Executor, global_scope
28 29
from paddle.fluid.param_attr import ParamAttr
from paddle.fluid.initializer import Constant
30 31
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX
from paddle.fluid.io import load_inference_model, save_inference_model
32
from ..quantization_pass import ReplaceFakeQuantDequantPass, QuantWeightPass
33
from paddle.fluid.log_helper import get_logger
34
from .. import quantization_pass
35
from ..utils import move_persistable_var_to_global_block
C
cc 已提交
36
from . import utils
37
from . import fuse_utils
38

C
cc 已提交
39
__all__ = ['ImperativeQuantAware']
40

41 42 43
_logger = get_logger(
    __name__, logging.INFO, fmt='%(asctime)s-%(levelname)s: %(message)s'
)
44 45


46 47
def lazy_import_fleet(layer_name_map, fake_quant_input_layers):
    from paddle.distributed import fleet
48

49
    layer_name_map[
50 51
        'ColumnParallelLinear'
    ] = fleet.meta_parallel.parallel_layers.mp_layers.ColumnParallelLinear
52
    layer_name_map[
53 54
        'RowParallelLinear'
    ] = fleet.meta_parallel.parallel_layers.mp_layers.RowParallelLinear
55 56 57 58 59
    fake_quant_input_layers.append(fleet.meta_parallel.RowParallelLinear)
    fake_quant_input_layers.append(fleet.meta_parallel.ColumnParallelLinear)
    return layer_name_map, fake_quant_input_layers


60
class ImperativeQuantAware:
61
    """
62
    Applying quantization aware training (QAT) to the dgraph model.
63 64
    """

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
    def __init__(
        self,
        quantizable_layer_type=[
            'Conv2D',
            'Linear',
            'Conv2DTranspose',
            'ColumnParallelLinear',
            'RowParallelLinear',
        ],
        weight_quantize_type='abs_max',
        activation_quantize_type='moving_average_abs_max',
        weight_bits=8,
        activation_bits=8,
        moving_rate=0.9,
        fuse_conv_bn=False,
        weight_preprocess_layer=None,
        act_preprocess_layer=None,
        weight_quantize_layer=None,
        act_quantize_layer=None,
        onnx_format=False,
    ):
C
cc 已提交
86
        """
87 88 89
        The constructor for ImperativeQuantAware.

        Args:
90 91
            quantizable_layer_type(list[str | layer]): List the type of
                layers that will be quantized. Default is ['Conv2D', 'Linear'].
92
            weight_quantize_type(str): quantization type for weights,
93
                which supports 'abs_max' and 'channel_wise_abs_max'.
94 95
            activation_quantize_type(str): quantization type for activations,
                which supports 'abs_max' and 'moving_average_abs_max' now.
C
cc 已提交
96 97 98 99 100
                If using 'abs_max' mode, the quantization scale will be
                calculated dynamically each step in both training and testing
                period. If using 'moving_average_abs_max', the static
                quantization scale will be calculated during training and
                used in inference.
101 102
            weight_bits(int): quantization bit number for weights, whereas
                the bias is not quantized.
C
cc 已提交
103 104 105
            activation_bits(int): quantization bit number for activations.
            moving_rate(float): the parameter for 'moving_average_abs_max'
                quantization.
106
            fuse_conv_bn(bool): Whether to fuse conv and bn, default is False.
C
cc 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
            weight_preprocess_layer(paddle.nn.Layer, optional): A paddle
                Layer that defines how to preprocess weight before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized weight and function returns
                processed weight to be quantized.
                If None, the weight will be quantized directly.
                Default is None.
            act_preprocess_layer(paddle.nn.Layer, optional): A paddle Layer
                that defines how to preprocess activation before quantization.
                Using this can quickly test if user's preprocess method works
                or not. The input is non-quantized activation and function returns
                processed activation to be quantized.
                If None, the activation will be quantized directly.
                Default is None.
            weight_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that
                defines how to quantize weight.
123 124 125
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
C
cc 已提交
126 127 128 129 130
                weight and returns dequantized weight.
                If None, will use uantization op defined by 'weight_quantize_type'.
                Default is None.
            act_quantize_layer(paddle.nn.Layer, optional): A paddle Layer that defines
                how to quantize activation.
131 132 133
                Using this can quickly test if user's quantization method works or not.
                In this layer, user should both define quantization method and
                dequantization method, that is, the function's input is non-quantized
134
                activation and returns dequantized activation.
C
cc 已提交
135 136
                If None, will use quantization op defined by 'activation_quantize_type'.
                Default is None.
137 138
            onnx_format (bool, optional): Whether to export the quantized model
                with format of ONNX. Default is False.
139

140
        Note:
C
cc 已提交
141 142 143 144
            If user sets attribute 'skip_quant' to a Layer that support dynamic
            quantization and sets it to true, the layer would not be quantized
            during training. If this attribute is not sets or the attribute is
            false, the Layer would be qunatized in training.
145 146

        Examples 1:
147 148
        .. code-block:: python

149
            import paddle
150 151
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware
152
            from paddle.vision.models \
153
                import resnet
154

155 156 157 158 159
            model = resnet.resnet50(pretrained=True)

            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')
160

161 162
            # Add the fake quant logical.
            # The original model will be rewrite.
163
            # The outscale of outputs in supportted layers would be calculated.
164 165 166 167
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...
168

169
            # Save quant model for the inference.
170
            imperative_qat.save_quantized_model(
171 172 173 174 175
                layer=model,
                model_path="./resnet50_qat",
                input_spec=[
                    paddle.static.InputSpec(
                    shape=[None, 3, 224, 224], dtype='float32')])
176 177 178 179 180 181 182 183 184 185

        Examples 2:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
186
                    super().__init__()
187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)

            # Fine-tune the quantized model
            # ...

            # Save quant model for the inference.
            imperative_qat.save_quantized_model(
                layer=model,
                model_path="./imperative_model_qat")
219
        """
220
        super().__init__()
221
        self.fuse_conv_bn = fuse_conv_bn
H
huangxu96 已提交
222

C
cc 已提交
223 224 225 226 227 228 229 230 231 232
        kwargs = {
            "quantizable_layer_type": quantizable_layer_type,
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_preprocess_layer": weight_preprocess_layer,
            "act_preprocess_layer": act_preprocess_layer,
            "weight_quantize_layer": weight_quantize_layer,
233
            "act_quantize_layer": act_quantize_layer,
234
        }
C
cc 已提交
235 236 237

        self._quantize_inputs = ImperativeQuantizeInputs(**kwargs)

238
        self._quantize_outputs = ImperativeQuantizeOutputs(
239 240
            moving_rate, activation_bits, onnx_format
        )
241 242 243

    def quantize(self, model):
        """
C
cc 已提交
244 245 246 247 248
        According to weights' and activations' quantization types,
        the model will be added some fake quant ops, such as
        fake_quantize_dequantize_moving_average_abs_max,
        fake_quantize_dequantize_abs_max and so on. At the same time,
        the out_scale value of outputs would be calculated.
249 250

        Args:
251
            model(paddle.nn.Layer): the model to be quantized.
252 253
        Returns:
            None
254 255 256 257 258 259 260 261 262 263

        Examples:
        .. code-block:: python

            import paddle
            from paddle.fluid.contrib.slim.quantization \
                import ImperativeQuantAware

            class ImperativeModel(paddle.nn.Layer):
                def __init__(self):
264
                    super().__init__()
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
                    # self.linear_0 would skip the quantization.
                    self.linear_0 = paddle.nn.Linear(784, 400)
                    self.linear_0.skip_quant = True

                    # self.linear_1 would not skip the quantization.
                    self.linear_1 = paddle.nn.Linear(400, 10)
                    self.linear_1.skip_quant = False

                def forward(self, inputs):
                    x = self.linear_0(inputs)
                    x = self.linear_1(inputs)
                    return x

            model = ImperativeModel()
            imperative_qat = ImperativeQuantAware(
                weight_quantize_type='abs_max',
                activation_quantize_type='moving_average_abs_max')

            # Add the fake quant logical.
            # The original model will be rewrite.
            #
            # There is only one Layer(self.linear1) would be added the
            # fake quant logical.
            imperative_qat.quantize(model)
289
        """
290 291 292
        assert isinstance(
            model, dygraph.Layer
        ), "The model must be the instance of dygraph.Layer."
293 294 295 296

        if self.fuse_conv_bn:
            fuse_utils.fuse_conv_bn(model)

C
cc 已提交
297
        self._quantize_inputs.apply(model)
298
        self._quantize_outputs.apply(model)
299
        return model
C
cc 已提交
300 301

    def save_quantized_model(self, layer, path, input_spec=None, **config):
302 303 304
        self._quantize_outputs.save_quantized_model(
            layer, path, input_spec, **config
        )
C
cc 已提交
305 306


307
class ImperativeQuantizeInputs:
C
cc 已提交
308 309 310 311 312
    """
    Based on the input params, add the quant_dequant computational
    logic both for activation inputs and weight inputs.
    """

313 314 315 316 317 318 319 320 321 322 323 324 325
    def __init__(
        self,
        quantizable_layer_type=['Conv2D', 'Linear', 'Conv2DTranspose'],
        weight_quantize_type='abs_max',
        activation_quantize_type='moving_average_abs_max',
        weight_bits=8,
        activation_bits=8,
        moving_rate=0.9,
        weight_preprocess_layer=None,
        act_preprocess_layer=None,
        weight_quantize_layer=None,
        act_quantize_layer=None,
    ):
C
cc 已提交
326
        """
327
        The constructor for ImperativeQuantizeInputs.
C
cc 已提交
328 329 330

        Please refer to the args of ImperativeQuantAware.
        """
331
        super().__init__()
332
        self.layer_name_map, self.fake_quant_input_layers = lazy_import_fleet(
333 334
            utils.layer_name_map, utils.fake_quant_input_layers
        )
C
cc 已提交
335 336

        self._quantizable_layer_type = tuple(
337 338 339 340 341
            self.layer_name_map[layer]
            if layer in self.layer_name_map
            else layer
            for layer in quantizable_layer_type
        )
C
cc 已提交
342
        for layer in self._quantizable_layer_type:
343 344 345 346
            assert (
                not isinstance(layer, str)
                and layer in self.fake_quant_input_layers
            ), ("%s is unspported to be quantized." % layer)
C
cc 已提交
347 348

        quantize_type = {
349 350 351 352 353
            'abs_max',
            'moving_average_abs_max',
            'channel_wise_abs_max',
            'lsq_weight',
            'channel_wise_lsq_weight',
C
cc 已提交
354
        }
C
Chang Xu 已提交
355
        act_quantize_type = {'moving_average_abs_max', 'lsq_act'}
356 357 358 359 360
        assert (
            weight_quantize_type != 'moving_average_abs_max'
            and weight_quantize_type in quantize_type
        ), (
            "Unsupported weight_quantize_type: %s. It can only "
361
            "be abs_max or channel_wise_abs_max." % weight_quantize_type
362
        )
363
        # TODO (jc): activation_quantize_type supports range_abs_max
364 365 366
        assert activation_quantize_type in act_quantize_type, (
            "Unsupported activation_quantize_type: %s. It can "
            "only be moving_average_abs_max or lsq_act now."
C
cc 已提交
367
            % activation_quantize_type
368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
        )

        bits_check = (
            lambda bits: isinstance(bits, int) and bits >= 0 and bits <= 16
        )
        assert bits_check(weight_bits), "weight_bits should be 1, 2,... or 16."
        assert bits_check(
            activation_bits
        ), "activation_bits should be 1, 2,... or 16."

        layer_check = lambda method: method is None or issubclass(
            method, dygraph.layers.Layer
        )
        assert layer_check(
            weight_preprocess_layer
        ), "weight_preprocess should be nn.Layer."
        assert layer_check(
            act_preprocess_layer
        ), "act_preprocess should be nn.Layer."
        assert layer_check(
            weight_quantize_layer
        ), "weight_quantize should be nn.Layer."
        assert layer_check(
            act_quantize_layer
        ), "act_quantize should be nn.Layer."
C
cc 已提交
393 394 395 396 397 398 399 400 401 402

        self._kwargs = {
            "weight_quantize_type": weight_quantize_type,
            "activation_quantize_type": activation_quantize_type,
            "weight_bits": weight_bits,
            "activation_bits": activation_bits,
            "moving_rate": moving_rate,
            "weight_pre_layer": weight_preprocess_layer,
            "act_pre_layer": act_preprocess_layer,
            "weight_quant_layer": weight_quantize_layer,
403
            "act_quant_layer": act_quantize_layer,
C
cc 已提交
404 405 406
        }

    def apply(self, model):
407
        """
408
        Quantize the weights and activations to calculate for specific
409 410 411 412 413 414 415 416 417 418
        layers.

        Args:
            model(paddle.nn.Layer): The target model which would
                calculate the input quantization scale.

        Returns:
            None
        """

419 420 421
        assert isinstance(
            model, dygraph.Layer
        ), "The model must be the instance of dygraph.Layer."
C
cc 已提交
422

423
        for name, cur_layer in model.named_sublayers():
424 425 426 427
            if not isinstance(cur_layer, self._quantizable_layer_type) or (
                hasattr(cur_layer, "skip_quant")
                and cur_layer.skip_quant == True
            ):
428 429
                continue

430 431 432
            parent_layer, sub_name = utils.find_parent_layer_and_sub_name(
                model, name
            )
433 434 435

            cur_quant_layer = self._get_input_quantized_layer(cur_layer)
            setattr(parent_layer, sub_name, cur_quant_layer)
436

437
    def _get_input_quantized_layer(self, layer):
C
cc 已提交
438
        quant_layer_name = None
439

440
        for key, value in self.layer_name_map.items():
C
cc 已提交
441 442 443
            if isinstance(layer, value):
                quant_layer_name = 'Quantized' + key
                break
444 445 446
        assert quant_layer_name is not None, (
            "The layer %s is unsupported to be quantized." % layer.full_name()
        )
447

448
        return quant_layers.__dict__[quant_layer_name](layer, **self._kwargs)
449

450

451
class ImperativeQuantizeOutputs:
452
    """
453
    Calculate the output scales for target layers.
454 455
    """

456
    def __init__(self, moving_rate=0.9, activation_bits=8, onnx_format=False):
457
        """
458
        The constructor for ImperativeQuantizeOutputs.
459 460

        Args:
C
cc 已提交
461 462
            moving_rate(float): The decay coefficient of moving average.
                                The default value is 0.9.
463
            activation_bits(int, optional): quantization bit number for activation. Default is 8.
464
        """
465
        super().__init__()
466
        self._moving_rate = moving_rate
467
        self._activation_bits = activation_bits
468
        self._onnx_format = onnx_format
469

C
cc 已提交
470
    def apply(self, model):
471
        """
472 473
        Insert the `moving_average_abs_max_scale` layers to calculate the
        output scales for specific layers in the dygraph model.
474 475

        Args:
476
            model(paddle.nn.Layer): The target model which would be
477
                calculate the output quantization scale.
478 479 480 481

        Returns:
            None
        """
482 483 484
        assert isinstance(
            model, dygraph.Layer
        ), "The model must be the instance of dygraph.Layer."
485

486
        for cur_name, cur_layer in model.named_sublayers():
X
XGZhang 已提交
487 488
            if '_act_preprocess' in cur_name:
                continue
489
            if not self._is_target_layer(cur_layer):
490 491
                continue

492 493 494
            parent_layer, sub_name = utils.find_parent_layer_and_sub_name(
                model, cur_name
            )
495

496 497
            reduce_type = None

498
            if isinstance(cur_layer, tuple(utils.fake_quant_output_layers)):
499
                cur_quant_layer = quant_layers.FakeQuantMAOutputScaleLayer(
500 501
                    cur_layer, self._moving_rate, reduce_type=reduce_type
                )
502
            else:
503
                cur_quant_layer = quant_layers.MAOutputScaleLayer(
504 505
                    cur_layer, self._moving_rate, reduce_type=reduce_type
                )
506 507

            setattr(parent_layer, sub_name, cur_quant_layer)
508

509
    def save_quantized_model(self, model, path, input_spec=None, **config):
510 511 512 513
        """
        Save the quantized model for the inference.

        Args:
514
            model (Layer): The model to be saved.
515
            path (str): The path prefix to save model. The format is
516 517 518
                ``dirname/file_prefix`` or ``file_prefix``.
            input_spec (list[InputSpec|Tensor], optional): Describes the input
                of the saved model's forward method, which can be described by
519
                InputSpec or example Tensor. If None, all input variables of
520 521
                the original Layer's forward method would be the inputs of
                the saved model. Default None.
522
            **config (dict, optional): Other save configuration options for
523 524 525
                compatibility. We do not recommend using these configurations,
                they may be removed in the future. If not necessary, DO NOT use
                them. Default None.
526
                The following options are currently supported:
527 528 529
                (1) output_spec (list[Tensor]): Selects the output targets of
                the saved model. By default, all return variables of original
                Layer's forward method are kept as the output of the saved model.
530
                If the provided ``output_spec`` list is not all output variables,
531
                the saved model will be pruned according to the given
532
                ``output_spec`` list.
533 534 535 536

        Returns:
            None
        """
537 538 539
        assert isinstance(
            model, dygraph.Layer
        ), "The model must be the instance of dygraph.Layer."
540

541
        paddle.jit.save(layer=model, path=path, input_spec=input_spec, **config)
542 543

        is_dynamic_mode = False
544 545 546 547
        if paddle.in_dynamic_mode():
            is_dynamic_mode = True
            paddle.enable_static()

548 549
        place = core.CPUPlace()
        scope = global_scope()
550 551 552
        exe = Executor(place)

        dirname = os.path.dirname(path)
553 554 555
        basename = os.path.basename(path)
        model_filename = basename + INFER_MODEL_SUFFIX
        params_filename = basename + INFER_PARAMS_SUFFIX
556

557 558 559 560 561 562 563 564 565 566
        [
            infer_program,
            feed_target_names,
            fetch_targets,
        ] = load_inference_model(
            dirname=dirname,
            executor=exe,
            model_filename=model_filename,
            params_filename=params_filename,
        )
567

568
        if not self._onnx_format:
569
            self._gather_scales(infer_program, scope, fetch_targets)
570

571 572 573 574 575 576 577 578
            # Remove `moving_average_abs_max_scale` node in sub graphs.
            graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
            for sub_graph in graph.all_sub_graphs():
                for _op in sub_graph.all_op_nodes():
                    if _op.name() == "moving_average_abs_max_scale":
                        sub_graph.safe_remove_nodes(_op)
                sub_graph.resolve_hazard()
            infer_program = graph.to_program()
579

580
            self._set_skip_quant_attr(infer_program)
G
guofei 已提交
581

582 583
            clip_extra = False
        else:
584
            graph = IrGraph(core.Graph(infer_program.desc), for_test=False)
585
            transform_pass = ReplaceFakeQuantDequantPass(
586 587
                scope, place, quant_bits=self._activation_bits
            )
588 589 590
            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                transform_pass.apply(sub_graph)
591 592

            quant_weight_pass = QuantWeightPass(scope, place)
593 594 595
            for sub_graph in graph.all_sub_graphs():
                sub_graph._for_test = True
                quant_weight_pass.apply(sub_graph)
596

597 598 599 600
            infer_program = graph.to_program()

            clip_extra = True

601 602
        move_persistable_var_to_global_block(infer_program)

603 604 605 606 607 608 609 610 611 612
        save_inference_model(
            dirname=dirname,
            feeded_var_names=feed_target_names,
            target_vars=fetch_targets,
            executor=exe,
            main_program=infer_program.clone(),
            model_filename=model_filename,
            params_filename=params_filename,
            clip_extra=clip_extra,
        )
613

614 615 616
        if is_dynamic_mode:
            paddle.disable_static()

617
    def _is_target_layer(self, layer):
618
        """
619
        Whether the layer needs to calculate output scales.
620
        """
621 622 623 624 625
        # exclude fake_quant ops in quant_layers file
        if not isinstance(layer, dygraph.Layer):
            return False

        if self._onnx_format:
626 627 628 629 630
            return (
                True
                if isinstance(layer, tuple(utils.fake_quant_wrap_layers))
                else False
            )
631

632
        flag = False
633 634 635
        if utils.is_leaf_layer(layer) and not isinstance(
            layer, tuple(utils.fake_quant_leaf_layers)
        ):
636
            flag = True
637

638 639
        if isinstance(layer, tuple(utils.fake_quant_wrap_layers)):
            flag = True
640

641 642
        if isinstance(layer, paddle.nn.quant.FloatFunctionalLayer):
            flag = True
643

644
        return flag
C
cc 已提交
645

646
    def _gather_scales(self, program, scope, fetch_targets):
647
        """
648
        Get all scales from fake ops, save them into the corresponding ops
649
        and delete all moving_average_abs_max_scale ops.
650
        """
651 652 653

        def _gather_input_scale():
            target_ops = []
654 655 656
            skip_ops = utils.fake_quantize_dequantize_op_types + [
                "moving_average_abs_max_scale"
            ]
657 658 659 660 661 662 663 664 665
            for block in program.blocks:
                for op in block.ops:
                    if op.type not in skip_ops:
                        target_ops.append(op)

            for op in target_ops:
                for in_var_name in utils._get_op_input_var_names(op):
                    previous_op = utils.find_previous_op(op.block, in_var_name)

666 667 668 669
                    if previous_op is not None and (
                        "quantize_dequantize" in previous_op.type
                        or previous_op.type == "moving_average_abs_max_scale"
                    ):
670 671 672 673
                        scale_name = previous_op.output('OutScale')[0]
                        in_scale = utils.load_variable_data(scope, scale_name)
                        in_scale = utils.fp_numpy_to_naive(in_scale)
                        argname, index = utils._get_input_name_index(
674 675 676 677 678
                            op, in_var_name
                        )
                        op._set_attr(
                            argname + str(index) + "_threshold", in_scale
                        )
679
                        op._set_attr("with_quant_attr", True)
680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699

        def _gather_output_scale():
            target_ops = []
            for block in program.blocks:
                for op in block.ops:
                    if op.type == "moving_average_abs_max_scale":
                        target_ops.append(op)

            for op in target_ops:
                in_var_name = op.input('X')[0]
                out_var_name = op.output('Out')[0]
                block = op.block
                previous_op = utils.find_previous_op(block, in_var_name)
                next_ops = utils.find_next_ops(block, out_var_name)

                out_scale_name = op.output('OutScale')[0]
                out_scale = utils.load_variable_data(scope, out_scale_name)
                out_scale = utils.fp_numpy_to_naive(out_scale)

                if previous_op.type != "feed":
X
XGZhang 已提交
700 701 702 703
                    res = utils._get_output_name_index(previous_op, in_var_name)
                    if res is not None:
                        argname, index = res
                        previous_op._set_attr(
704 705
                            argname + str(index) + "_threshold", out_scale
                        )
X
XGZhang 已提交
706
                        previous_op._set_attr("out_threshold", out_scale)
707
                        previous_op._set_attr("with_quant_attr", True)
708 709 710

                for next_op in next_ops:
                    next_op._rename_input(out_var_name, in_var_name)
711 712 713 714 715
                    # If next_op is `fetch` and out_var_name in fetch_targets,
                    # fetch_targets must update to in_var_name when rename input.
                    for i in range(len(fetch_targets)):
                        if fetch_targets[i].name == out_var_name:
                            fetch_targets[i] = block.var(in_var_name)
716 717 718

        _gather_input_scale()
        _gather_output_scale()
C
cc 已提交
719

720
    def _set_skip_quant_attr(self, program):
721
        """
722
        Label the skip quantized ops.
723
        """
724 725 726 727
        for block in program.blocks:
            for op in block.ops:
                if self._is_skip_quant_op(block, op):
                    op._set_attr("skip_quant", True)
728
                    op._set_attr("with_quant_attr", True)
G
guofei 已提交
729 730 731 732 733 734 735

    def _is_skip_quant_op(self, block, in_op):
        """
        The input op should be skipped quantization.
        1. the type of input op should be conv2d, depthwise_conv2d or matmul
        2. the previous ops of the input op are not fake_quantize_dequantize ops
        """
736
        target_op_types = [
737 738 739 740
            "conv2d",
            "depthwise_conv2d",
            "matmul",
            "conv2d_transpose",
741
        ]
G
guofei 已提交
742 743 744
        if in_op.type not in target_op_types:
            return False

745 746 747 748 749 750 751 752 753
        previous_ops = [
            utils.find_previous_op(block, arg_name)
            for arg_name in in_op.input_arg_names
        ]
        return any(
            op is not None
            and op.type not in utils.fake_quantize_dequantize_op_types
            for op in previous_ops
        )