math_function.cu 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <vector>
16

17 18 19 20 21
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/bfloat16.h"
#include "paddle/fluid/platform/float16.h"
22 23 24 25 26
#include "paddle/phi/backends/gpu/gpu_context.h"
#include "paddle/phi/kernels/funcs/blas/blas.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/math_function.h"
#include "paddle/phi/kernels/funcs/math_function_impl.h"
27

28
namespace phi {
29 30
namespace funcs {

31 32
using float16 = phi::dtype::float16;
using bfloat16 = phi::dtype::bfloat16;
33

34 35 36 37 38 39 40 41 42 43 44
template struct SetConstant<phi::GPUContext, phi::dtype::float16>;
template struct SetConstant<phi::GPUContext, phi::dtype::bfloat16>;
template struct SetConstant<phi::GPUContext, float>;
template struct SetConstant<phi::GPUContext, double>;
template struct SetConstant<phi::GPUContext, uint8_t>;
template struct SetConstant<phi::GPUContext, int>;
template struct SetConstant<phi::GPUContext, int16_t>;
template struct SetConstant<phi::GPUContext, int64_t>;
template struct SetConstant<phi::GPUContext, bool>;
template struct SetConstant<phi::GPUContext, phi::dtype::complex<float>>;
template struct SetConstant<phi::GPUContext, phi::dtype::complex<double>>;
45 46

template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
47
                            phi::dtype::float16>;
48
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
49
                            phi::dtype::bfloat16>;
50 51 52 53 54 55 56 57
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, float>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, double>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, uint8_t>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, int>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, int16_t>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, int64_t>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext, bool>;
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
58
                            phi::dtype::complex<float>>;
59
template struct SetConstant<paddle::platform::CUDAPinnedDeviceContext,
60
                            phi::dtype::complex<double>>;
61

62 63 64 65 66 67 68 69 70 71 72 73
#define DEFINE_GPU_TRANS(RANK)                                \
  template struct Transpose<phi::GPUContext, bool, RANK>;     \
  template struct Transpose<phi::GPUContext, float, RANK>;    \
  template struct Transpose<phi::GPUContext, double, RANK>;   \
  template struct Transpose<phi::GPUContext, float16, RANK>;  \
  template struct Transpose<phi::GPUContext, bfloat16, RANK>; \
  template struct Transpose<phi::GPUContext, int8_t, RANK>;   \
  template struct Transpose<phi::GPUContext, int32_t, RANK>;  \
  template struct Transpose<phi::GPUContext, int64_t, RANK>;  \
  template struct Transpose<phi::GPUContext,                  \
                            phi::dtype::complex<float>,       \
                            RANK>;                            \
74
  template struct Transpose<phi::GPUContext, phi::dtype::complex<double>, RANK>;
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

DEFINE_GPU_TRANS(1);
DEFINE_GPU_TRANS(2);
DEFINE_GPU_TRANS(3);
DEFINE_GPU_TRANS(4);
DEFINE_GPU_TRANS(5);
DEFINE_GPU_TRANS(6);

#define REINTERPRET(T, DST_PTR, SRC_PTR) \
  T* DST_PTR = reinterpret_cast<T*>(SRC_PTR)

template <typename T>
__global__ void TransposeNormalKernel(const T* in_ptr,
                                      T* out_ptr,
                                      int64_t element,
                                      const int64_t* in_stride_ptr,
                                      const int64_t* out_stride_ptr,
                                      const int64_t* axis_ptr,
                                      int rank) {
  CUDA_KERNEL_LOOP(out_idx, element) {
    int64_t in_idx = 0;
    int64_t tmp_idx = out_idx;
    for (int i = 0; i < rank; ++i) {
      const int64_t coordinate = tmp_idx / out_stride_ptr[i];
      tmp_idx -= coordinate * out_stride_ptr[i];
      in_idx += coordinate * in_stride_ptr[axis_ptr[i]];
    }
    out_ptr[out_idx] = in_ptr[in_idx];
  }
}

106 107 108 109 110 111 112
template <typename DeviceContext, typename T>
void TransposeNormal<DeviceContext, T>::operator()(
    const DeviceContext& context,
    const paddle::framework::Tensor& in,
    paddle::framework::Tensor* out,
    const std::vector<int>& axis) {
  const int rank = axis.size();
113 114
  auto in_stride = phi::stride(in.dims());
  auto out_stride = phi::stride(out->dims());
115 116
  auto* in_ptr = in.data<T>();
  auto* out_ptr = out->data<T>();
117

118 119 120 121 122 123 124 125 126 127 128 129
  // copy in_stride, out_stride, axis to gpu device
  const paddle::platform::CUDAPlace& cuda_place = context.GetPlace();
  paddle::platform::CPUPlace cpu_place = paddle::platform::CPUPlace();
  size_t size = 3 * rank * sizeof(int64_t);
  auto cpu_buf_holder = paddle::memory::Alloc(cpu_place, size);
  auto cuda_buf_holder = paddle::memory::Alloc(cuda_place, size);
  REINTERPRET(int64_t, cpu_buf, cpu_buf_holder->ptr());
  REINTERPRET(int64_t, cuda_buf, cuda_buf_holder->ptr());
  for (int i = 0; i < rank; ++i) {
    cpu_buf[i] = in_stride[i];
    cpu_buf[rank + i] = out_stride[i];
    cpu_buf[2 * rank + i] = axis[i];
130
  }
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  paddle::memory::Copy(
      cuda_place, cuda_buf, cpu_place, cpu_buf, size, context.stream());
  REINTERPRET(const int64_t, in_stride_ptr, cuda_buf);
  REINTERPRET(const int64_t, out_stride_ptr, cuda_buf + rank);
  REINTERPRET(const int64_t, axis_ptr, cuda_buf + 2 * rank);

  const int MAX_BLOCK_DIM = context.GetMaxThreadsPerBlock();
  const int MAX_GRID_DIM = context.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
  int64_t elements = in.numel();
  int block_size = (elements >= MAX_BLOCK_DIM)
                       ? MAX_BLOCK_DIM
                       : (1 << static_cast<int>(std::log2(elements)));
  int grid_size = elements / block_size;
  grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
  TransposeNormalKernel<T><<<grid_size, block_size, 0, context.stream()>>>(
      in_ptr, out_ptr, elements, in_stride_ptr, out_stride_ptr, axis_ptr, rank);
}
148

H
hong 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
template <typename T>
struct TransposeNormal<phi::GPUContext, T> {
  void operator()(const phi::GPUContext& context,
                  const DenseTensor& in,
                  DenseTensor* out,
                  const std::vector<int>& axis) {
    const int rank = axis.size();
    auto in_stride = stride(in.dims());
    auto out_stride = stride(out->dims());
    auto* in_ptr = in.data<T>();
    auto* out_ptr = out->data<T>();

    // copy in_stride, out_stride, axis to gpu device
    const phi::GPUPlace& cuda_place = context.GetPlace();
    phi::CPUPlace cpu_place = paddle::platform::CPUPlace();
    size_t size = 3 * rank * sizeof(int64_t);
    auto cpu_buf_holder = paddle::memory::Alloc(cpu_place, size);
    auto cuda_buf_holder = paddle::memory::Alloc(cuda_place, size);
    REINTERPRET(int64_t, cpu_buf, cpu_buf_holder->ptr());
    REINTERPRET(int64_t, cuda_buf, cuda_buf_holder->ptr());
    for (int i = 0; i < rank; ++i) {
      cpu_buf[i] = in_stride[i];
      cpu_buf[rank + i] = out_stride[i];
      cpu_buf[2 * rank + i] = axis[i];
    }
    paddle::memory::Copy(
        cuda_place, cuda_buf, cpu_place, cpu_buf, size, context.stream());
    REINTERPRET(const int64_t, in_stride_ptr, cuda_buf);
    REINTERPRET(const int64_t, out_stride_ptr, cuda_buf + rank);
    REINTERPRET(const int64_t, axis_ptr, cuda_buf + 2 * rank);

    const int MAX_BLOCK_DIM = context.GetMaxThreadsPerBlock();
    const int MAX_GRID_DIM =
        context.GetMaxPhysicalThreadCount() / MAX_BLOCK_DIM;
    int64_t elements = in.numel();
    int block_size = (elements >= MAX_BLOCK_DIM)
                         ? MAX_BLOCK_DIM
                         : (1 << static_cast<int>(std::log2(elements)));
    int grid_size = elements / block_size;
    grid_size = (grid_size >= MAX_GRID_DIM) ? MAX_GRID_DIM : grid_size;
189 190 191 192 193 194 195 196
    TransposeNormalKernel<T>
        <<<grid_size, block_size, 0, context.stream()>>>(in_ptr,
                                                         out_ptr,
                                                         elements,
                                                         in_stride_ptr,
                                                         out_stride_ptr,
                                                         axis_ptr,
                                                         rank);
H
hong 已提交
197 198 199
  }
};

200
// define transpose normal
201
#define DEFINE_GPU_TRANS_NORMAL(TYPE) \
202
  template struct TransposeNormal<phi::GPUContext, TYPE>
203 204 205 206 207 208 209 210 211 212 213

DEFINE_GPU_TRANS_NORMAL(float16);
DEFINE_GPU_TRANS_NORMAL(bfloat16);
DEFINE_GPU_TRANS_NORMAL(float);
DEFINE_GPU_TRANS_NORMAL(double);
DEFINE_GPU_TRANS_NORMAL(int);
DEFINE_GPU_TRANS_NORMAL(int64_t);
DEFINE_GPU_TRANS_NORMAL(bool);
DEFINE_GPU_TRANS_NORMAL(int16_t);
DEFINE_GPU_TRANS_NORMAL(uint8_t);
DEFINE_GPU_TRANS_NORMAL(int8_t);
214 215
DEFINE_GPU_TRANS_NORMAL(phi::dtype::complex<float>);
DEFINE_GPU_TRANS_NORMAL(phi::dtype::complex<double>);
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

struct TensorSetConstantGPU {
  TensorSetConstantGPU(const paddle::platform::DeviceContext& context,
                       paddle::framework::Tensor* tensor,
                       float value)
      : context_(context), tensor_(tensor), value_(value) {}

  template <typename T>
  void apply() const {
    SetConstant<paddle::platform::CUDADeviceContext, T> functor;
    functor(
        reinterpret_cast<const paddle::platform::CUDADeviceContext&>(context_),
        tensor_,
        static_cast<T>(value_));
  }

  const paddle::platform::DeviceContext& context_;
  paddle::framework::Tensor* tensor_;
  float value_;
};

template <>
void set_constant_with_place<paddle::platform::CUDAPlace>(
    const paddle::platform::DeviceContext& context,
    paddle::framework::Tensor* tensor,
    float value) {
242 243
  phi::VisitDataType(tensor->dtype(),
                     TensorSetConstantGPU(context, tensor, value));
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
}

template <typename T>
__global__ void RowwiseAddKernel(
    const T* a, const T* b, T* c, int width, int num) {
  T tmp = 1.0 / width;
  CUDA_KERNEL_LOOP(i, num) {
    int h = i * tmp;
    int w = i - h * width;
    c[i] = a[i] + b[w];
  }
}

template <typename T>
struct RowwiseAdd<paddle::platform::CUDADeviceContext, T> {
  void operator()(const paddle::platform::CUDADeviceContext& context,
                  const paddle::framework::Tensor& input,
                  const paddle::framework::Tensor& vector,
                  paddle::framework::Tensor* output) {
    auto in_dims = input.dims();
    auto out_dims = output->dims();
    auto size = input.numel() / in_dims[0];
    PADDLE_ENFORCE_EQ(
        vector.numel(),
        size,
269
        phi::errors::InvalidArgument(
270 271 272 273 274 275 276 277 278 279
            "The input vector size"
            " should be equal to the size of each row of input tensor."
            " Expected vector size=%d, but received %d",
            size,
            vector.numel()));
    const char* in_dims_cstr = in_dims.to_str().c_str();
    const char* out_dims_cstr = out_dims.to_str().c_str();
    PADDLE_ENFORCE_EQ(
        out_dims,
        in_dims,
280
        phi::errors::InvalidArgument(
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
            "The output tensor shape should be same as the input tensor"
            " shape. Expected output tensor shape: %s,"
            " but received %s",
            in_dims_cstr,
            out_dims_cstr));
    int blocks = 512;
    int grids = (input.numel() + blocks - 1) / blocks;
    RowwiseAddKernel<T><<<grids, blocks, 0, context.stream()>>>(
        input.data<T>(),
        vector.data<T>(),
        output->data<T>(),
        static_cast<int>(in_dims[1]),
        static_cast<int>(input.numel()));
  }
};

template struct RowwiseAdd<paddle::platform::CUDADeviceContext, float>;
template struct RowwiseAdd<paddle::platform::CUDADeviceContext, double>;
template struct ColwiseSum<paddle::platform::CUDADeviceContext, float>;
template struct ColwiseSum<paddle::platform::CUDADeviceContext, int>;
template struct ColwiseSum<paddle::platform::CUDADeviceContext, int64_t>;
// template struct ColwiseSum<paddle::platform::CUDADeviceContext, double>;
// The ColwiseSum<paddle::platform::CUDADeviceContext, double> failed in debug
// mode,
// and only failed for this case. So reimplemented it.
template <>
void ColwiseSum<paddle::platform::CUDADeviceContext, double>::operator()(
    const paddle::platform::CUDADeviceContext& context,
    const paddle::framework::Tensor& input,
    paddle::framework::Tensor* vector) {
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(),
                    size,
315
                    phi::errors::InvalidArgument(
316 317 318 319 320 321 322 323 324
                        "The size of input vector"
                        " should be equal to the size of input tensor column"
                        " dimension. Expected vector size=%d, but received %d",
                        size,
                        vector->numel()));
  paddle::framework::Tensor one;
  one.mutable_data<double>({in_dims[0]}, context.GetPlace());
  SetConstant<paddle::platform::CUDADeviceContext, double> set;
  set(context, &one, static_cast<double>(1.0));
325
  phi::funcs::GetBlas<paddle::platform::CUDADeviceContext, double>(context)
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
      .GEMV(true,
            static_cast<int>(in_dims[0]),
            static_cast<int>(in_dims[1]),
            1.0,
            input.data<double>(),
            one.data<double>(),
            0.0,
            vector->data<double>());
}

template struct RowwiseSum<paddle::platform::CUDADeviceContext, float>;
// template struct RowwiseSum<paddle::platform::CUDADeviceContext, double>;
// TODO(zcd): Following ColwiseSum format, need to confirm.
// The RowwiseSum<paddle::platform::CUDADeviceContext, double> failed in debug
// mode,
// and only failed for this case. So reimplemented it.
template <>
void RowwiseSum<paddle::platform::CUDADeviceContext, double>::operator()(
    const paddle::platform::CUDADeviceContext& context,
    const paddle::framework::Tensor& input,
    paddle::framework::Tensor* vector) {
  auto in_dims = input.dims();
  auto size = input.numel() / in_dims[0];
  PADDLE_ENFORCE_EQ(vector->numel(),
                    in_dims[0],
351
                    phi::errors::InvalidArgument(
352 353 354 355 356 357 358 359 360
                        "The size of input vector"
                        " should be equal to the size of input tensor row"
                        " dimension. Expected vector size=%d, but received %d",
                        in_dims[0],
                        vector->numel()));
  paddle::framework::Tensor one;
  one.mutable_data<double>({size}, context.GetPlace());
  SetConstant<paddle::platform::CUDADeviceContext, double> set;
  set(context, &one, static_cast<double>(1.0));
361
  phi::funcs::GetBlas<paddle::platform::CUDADeviceContext, double>(context)
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
      .GEMV(true,
            static_cast<int>(in_dims[1]),
            static_cast<int>(in_dims[0]),
            1.0,
            one.data<double>(),
            input.data<double>(),
            0.0,
            vector->data<double>());
}

template struct RowwiseMean<paddle::platform::CUDADeviceContext, float>;
template struct RowwiseMean<paddle::platform::CUDADeviceContext, double>;

template <typename T>
struct ElementwiseAddTo<paddle::platform::CUDADeviceContext, T> {
  void operator()(paddle::platform::CUDADeviceContext* ctx,
                  const paddle::framework::Tensor& src,
                  paddle::framework::Tensor* dst) {
    auto in = paddle::framework::EigenVector<T>::Flatten(src);
    auto out = paddle::framework::EigenVector<T>::Flatten(*dst);
    auto& place = *(ctx->eigen_device());
    out.device(place) = out + in;
  }
};

template struct ElementwiseAddTo<paddle::platform::CUDADeviceContext,
388
                                 phi::dtype::float16>;
389
template struct ElementwiseAddTo<paddle::platform::CUDADeviceContext,
390
                                 phi::dtype::bfloat16>;
391 392

}  // namespace funcs
393
}  // namespace phi