test_lrn_op.py 11.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import paddle
G
gongweibao 已提交
16 17
import unittest
import numpy as np
18 19
import paddle.fluid as fluid
import paddle.fluid.core as core
20
from op_test import OpTest
21
from paddle.fluid import Program, program_guard
G
gongweibao 已提交
22 23 24 25


class TestLRNOp(OpTest):
    def get_input(self):
26
        r''' TODO(gongweibao): why it's grad diff is so large?
G
gongweibao 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40
        x = np.ndarray(
            shape=(self.N, self.C, self.H, self.W), dtype=float, order='C')
        for m in range(0, self.N):
            for i in range(0, self.C):
                for h in range(0, self.H):
                    for w in range(0, self.W):
                        x[m][i][h][w] = m * self.C * self.H * self.W +  \
                                        i * self.H * self.W +  \
                                        h * self.W + w + 1
        '''
        x = np.random.rand(self.N, self.C, self.H, self.W).astype("float32")
        return x + 1

    def get_out(self):
M
minqiyang 已提交
41
        start = -(self.n - 1) // 2
G
gongweibao 已提交
42 43
        end = start + self.n

44
        mid = np.empty((self.N, self.C, self.H, self.W)).astype("float32")
G
gongweibao 已提交
45 46 47
        mid.fill(self.k)
        for m in range(0, self.N):
            for i in range(0, self.C):
Q
qingqing01 已提交
48
                for c in range(start, end):
G
gongweibao 已提交
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
                    ch = i + c
                    if ch < 0 or ch >= self.C:
                        continue

                    s = mid[m][i][:][:]
                    r = self.x[m][ch][:][:]
                    s += np.square(r) * self.alpha

        mid2 = np.power(mid, -self.beta)
        return np.multiply(self.x, mid2), mid

    def get_attrs(self):
        attrs = {
            'n': self.n,
            'k': self.k,
            'alpha': self.alpha,
65
            'beta': self.beta,
66
            'data_format': self.data_format,
G
gongweibao 已提交
67 68 69 70 71
        }
        return attrs

    def setUp(self):
        self.op_type = "lrn"
72 73
        self.init_test_case()

G
gongweibao 已提交
74 75 76 77 78 79 80 81 82 83 84
        self.N = 2
        self.C = 3
        self.H = 5
        self.W = 5

        self.n = 5
        self.k = 2.0
        self.alpha = 0.0001
        self.beta = 0.75
        self.x = self.get_input()
        self.out, self.mid_out = self.get_out()
85 86 87 88
        if self.data_format == 'NHWC':
            self.x = np.transpose(self.x, [0, 2, 3, 1])
            self.out = np.transpose(self.out, [0, 2, 3, 1])
            self.mid_out = np.transpose(self.mid_out, [0, 2, 3, 1])
G
gongweibao 已提交
89 90 91 92 93

        self.inputs = {'X': self.x}
        self.outputs = {'Out': self.out, 'MidOut': self.mid_out}
        self.attrs = self.get_attrs()

94 95 96
    def init_test_case(self):
        self.data_format = 'NCHW'

G
gongweibao 已提交
97 98 99 100
    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
101
        self.check_grad(['X'], 'Out')
G
gongweibao 已提交
102 103


104 105 106 107 108
class TestLRNOpAttrDataFormat(TestLRNOp):
    def init_test_case(self):
        self.data_format = 'NHWC'


109 110 111 112 113 114 115 116 117 118 119 120
class TestLocalResponseNormFAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def check_static_3d_input(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            in_np1 = np.random.random([3, 40, 40]).astype("float32")
            in_np2 = np.transpose(in_np1, (0, 2, 1))

121 122 123 124 125 126 127 128 129 130 131 132
            input1 = fluid.data(
                name="input1", shape=[3, 40, 40], dtype="float32"
            )
            input2 = fluid.data(
                name="input2", shape=[3, 40, 40], dtype="float32"
            )
            res1 = paddle.nn.functional.local_response_norm(
                x=input1, size=5, data_format='NCL'
            )
            res2 = paddle.nn.functional.local_response_norm(
                x=input2, size=5, data_format='NLC'
            )
133
            exe = fluid.Executor(place)
134 135 136 137 138
            fetches = exe.run(
                fluid.default_main_program(),
                feed={"input1": in_np1, "input2": in_np2},
                fetch_list=[res1, res2],
            )
139 140

            fetches1_tran = np.transpose(fetches[1], (0, 2, 1))
141
            np.testing.assert_allclose(fetches[0], fetches1_tran, rtol=1e-05)
142 143 144

    def check_static_4d_input(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
145 146 147 148 149 150 151 152 153 154 155 156 157
            input1 = fluid.data(
                name="input1", shape=[3, 3, 40, 40], dtype="float32"
            )
            input2 = fluid.data(
                name="input2", shape=[3, 40, 40, 3], dtype="float32"
            )

            res1 = paddle.nn.functional.local_response_norm(
                x=input1, size=5, data_format='NCHW'
            )
            res2 = paddle.nn.functional.local_response_norm(
                x=input2, size=5, data_format='NHWC'
            )
158 159 160 161 162

            in_np1 = np.random.random([3, 3, 40, 40]).astype("float32")
            in_np2 = np.transpose(in_np1, (0, 2, 3, 1))

            exe = fluid.Executor(place)
163 164 165 166 167
            fetches = exe.run(
                fluid.default_main_program(),
                feed={"input1": in_np1, "input2": in_np2},
                fetch_list=[res1, res2],
            )
168 169

            fetches1_tran = np.transpose(fetches[1], (0, 3, 1, 2))
170
            np.testing.assert_allclose(fetches[0], fetches1_tran, rtol=1e-05)
171 172 173

    def check_static_5d_input(self, place):
        with fluid.program_guard(fluid.Program(), fluid.Program()):
174 175 176 177 178 179 180 181 182 183 184 185
            input1 = fluid.data(
                name="input1", shape=[3, 3, 3, 40, 40], dtype="float32"
            )
            input2 = fluid.data(
                name="input2", shape=[3, 3, 40, 40, 3], dtype="float32"
            )
            res1 = paddle.nn.functional.local_response_norm(
                x=input1, size=5, data_format='NCDHW'
            )
            res2 = paddle.nn.functional.local_response_norm(
                x=input2, size=5, data_format='NDHWC'
            )
186 187 188 189 190

            in_np1 = np.random.random([3, 3, 3, 40, 40]).astype("float32")
            in_np2 = np.transpose(in_np1, (0, 2, 3, 4, 1))

            exe = fluid.Executor(place)
191 192 193 194 195
            fetches = exe.run(
                fluid.default_main_program(),
                feed={"input1": in_np1, "input2": in_np2},
                fetch_list=[res1, res2],
            )
196 197

            fetches1_tran = np.transpose(fetches[1], (0, 4, 1, 2, 3))
198
            np.testing.assert_allclose(fetches[0], fetches1_tran, rtol=1e-05)
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213

    def test_static(self):
        for place in self.places:
            self.check_static_3d_input(place=place)
            self.check_static_4d_input(place=place)
            self.check_static_5d_input(place=place)

    def check_dygraph_3d_input(self, place):
        with fluid.dygraph.guard(place):
            in_np1 = np.random.random([3, 40, 40]).astype("float32")
            in_np2 = np.transpose(in_np1, (0, 2, 1))

            in1 = paddle.to_tensor(in_np1)
            in2 = paddle.to_tensor(in_np2)

214 215 216 217 218 219
            res1 = paddle.nn.functional.local_response_norm(
                x=in1, size=5, data_format='NCL'
            )
            res2 = paddle.nn.functional.local_response_norm(
                x=in2, size=5, data_format='NLC'
            )
220 221

            res2_tran = np.transpose(res2.numpy(), (0, 2, 1))
222
            np.testing.assert_allclose(res1.numpy(), res2_tran, rtol=1e-05)
223 224 225 226 227 228 229 230 231

    def check_dygraph_4d_input(self, place):
        with fluid.dygraph.guard(place):
            in_np1 = np.random.random([3, 3, 40, 40]).astype("float32")
            in_np2 = np.transpose(in_np1, (0, 2, 3, 1))

            in1 = paddle.to_tensor(in_np1)
            in2 = paddle.to_tensor(in_np2)

232 233 234 235 236 237
            res1 = paddle.nn.functional.local_response_norm(
                x=in1, size=5, data_format='NCHW'
            )
            res2 = paddle.nn.functional.local_response_norm(
                x=in2, size=5, data_format='NHWC'
            )
238 239

            res2_tran = np.transpose(res2.numpy(), (0, 3, 1, 2))
240
            np.testing.assert_allclose(res1.numpy(), res2_tran, rtol=1e-05)
241 242 243 244 245 246 247 248 249

    def check_dygraph_5d_input(self, place):
        with fluid.dygraph.guard(place):
            in_np1 = np.random.random([3, 3, 3, 40, 40]).astype("float32")
            in_np2 = np.transpose(in_np1, (0, 2, 3, 4, 1))

            in1 = paddle.to_tensor(in_np1)
            in2 = paddle.to_tensor(in_np2)

250 251 252 253 254 255
            res1 = paddle.nn.functional.local_response_norm(
                x=in1, size=5, data_format='NCDHW'
            )
            res2 = paddle.nn.functional.local_response_norm(
                x=in2, size=5, data_format='NDHWC'
            )
256 257

            res2_tran = np.transpose(res2.numpy(), (0, 4, 1, 2, 3))
258
            np.testing.assert_allclose(res1.numpy(), res2_tran, rtol=1e-05)
259 260 261 262 263 264 265 266 267 268 269 270 271 272

    def test_dygraph(self):
        for place in self.places:
            self.check_dygraph_3d_input(place)
            self.check_dygraph_4d_input(place)
            self.check_dygraph_5d_input(place)


class TestLocalResponseNormFAPIError(unittest.TestCase):
    def test_errors(self):
        with program_guard(Program(), Program()):

            def test_Variable():
                # the input of lrn must be Variable.
273 274 275
                x1 = fluid.create_lod_tensor(
                    np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace()
                )
276 277 278 279 280 281 282 283 284 285 286 287
                paddle.nn.functional.local_response_norm(x1, size=5)

            self.assertRaises(TypeError, test_Variable)

            def test_datatype():
                x = fluid.data(name='x', shape=[3, 4, 5, 6], dtype="int32")
                paddle.nn.functional.local_response_norm(x, size=5)

            self.assertRaises(TypeError, test_datatype)

            def test_dataformat():
                x = fluid.data(name='x', shape=[3, 4, 5, 6], dtype="float32")
288 289 290
                paddle.nn.functional.local_response_norm(
                    x, size=5, data_format="NCTHW"
                )
291 292 293 294 295 296 297 298 299

            self.assertRaises(ValueError, test_dataformat)

            def test_dim():
                x = fluid.data(name='x', shape=[3, 4], dtype="float32")
                paddle.nn.functional.local_response_norm(x, size=5)

            self.assertRaises(ValueError, test_dim)

H
huangjun12 已提交
300
            def test_shape():
H
huangjun12 已提交
301
                x = paddle.rand(shape=[0, 0, 2, 3], dtype="float32")
H
huangjun12 已提交
302 303 304 305
                paddle.nn.functional.local_response_norm(x, size=5)

            self.assertRaises(ValueError, test_shape)

306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

class TestLocalResponseNormCAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.places = [fluid.CPUPlace()]
        if core.is_compiled_with_cuda():
            self.places.append(fluid.CUDAPlace(0))

    def test_dygraph(self):
        for place in self.places:
            with fluid.dygraph.guard(place):
                in1 = paddle.rand(shape=(3, 3, 40, 40), dtype="float32")
                in2 = paddle.transpose(in1, [0, 2, 3, 1])

                m1 = paddle.nn.LocalResponseNorm(size=5, data_format='NCHW')
                m2 = paddle.nn.LocalResponseNorm(size=5, data_format='NHWC')

                res1 = m1(in1)
                res2 = m2(in2)

                res2_tran = np.transpose(res2.numpy(), (0, 3, 1, 2))
327
                np.testing.assert_allclose(res1.numpy(), res2_tran, rtol=1e-05)
328 329


G
gongweibao 已提交
330 331
if __name__ == "__main__":
    unittest.main()