fc_mkldnn_op.cc 20.7 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
W
wanghuancoder 已提交
16

17
#include "paddle/fluid/operators/fc_op.h"
M
mozga-intel 已提交
18
#include "paddle/fluid/platform/mkldnn_helper.h"
19
#include "paddle/fluid/platform/mkldnn_reuse.h"
20

M
mozga-intel 已提交
21 22 23
namespace paddle {
namespace operators {

24 25 26 27 28
using dnnl::inner_product_forward;
using dnnl::memory;
using dnnl::primitive;
using dnnl::prop_kind;
using dnnl::stream;
29 30
using framework::DDim;
using framework::ExecutionContext;
31 32
using phi::funcs::OneDNNGetDataType;
using phi::funcs::to_void_cast;
33
using platform::MKLDNNDeviceContext;
34

35 36 37 38 39 40 41
struct InnerProductCache {
  dnnl::inner_product_forward inner_product_p;
  dnnl::memory src_mem;
  dnnl::memory weights_mem;
  dnnl::memory bias_mem;
  dnnl::memory dst_mem;
};
M
Michał Gallus 已提交
42
template <typename T_in, typename T_w, typename T_out>
43
class FCMKLDNNHandler
44 45
    : public phi::funcs::OneDNNHandlerNoCachingT<T_in,
                                                 dnnl::inner_product_forward> {
M
mozga-intel 已提交
46
 public:
47 48
  FCMKLDNNHandler(const paddle::framework::ExecutionContext& ctx,
                  const platform::MKLDNNDeviceContext& dev_ctx,
49 50 51 52
                  const phi::DenseTensor* x,
                  const phi::DenseTensor* weights,
                  const phi::DenseTensor* bias,
                  phi::DenseTensor* out,
53 54 55
                  const int in_num_col_dims,
                  dnnl::engine mkldnn_engine,
                  platform::Place cpu_place)
56
      : phi::funcs::OneDNNHandlerNoCachingT<T_in, dnnl::inner_product_forward>(
57 58 59 60 61 62 63 64 65 66
            mkldnn_engine, cpu_place),
        dev_ctx_(dev_ctx) {
    this->memory_key_ = ctx.InputName("W");

    auto x_vec_dims = phi::vectorize(x->dims());
    auto weights_vec_dims = phi::vectorize(weights->dims());

    int MB = 1;
    for (int i = 0; i < in_num_col_dims; ++i) {
      MB *= x_vec_dims[i];
67 68
    }

69 70 71
    int IC = 1;
    for (size_t i = in_num_col_dims; i < x_vec_dims.size(); ++i) {
      IC *= x_vec_dims[i];
72
    }
73

74
    int OC = weights_vec_dims[1];
M
mozga-intel 已提交
75

76
    dnnl::memory::desc bias_md;
77

78
    auto src_md = dnnl::memory::desc(
79
        {MB, IC}, OneDNNGetDataType<T_in>(), dnnl::memory::format_tag::any);
80
    auto weights_md = dnnl::memory::desc(
81
        {OC, IC}, OneDNNGetDataType<T_w>(), dnnl::memory::format_tag::any);
82
    auto dst_md = dnnl::memory::desc(
83
        {MB, OC}, OneDNNGetDataType<T_out>(), dnnl::memory::format_tag::any);
84 85
    if (bias) {
      bias_md = dnnl::memory::desc({bias->numel()},
86
                                   OneDNNGetDataType<float>(),
87 88
                                   dnnl::memory::format_tag::a);
    }
89

90
    const auto attrs = CreateFCAttrs(ctx);
A
Adam 已提交
91

92 93 94 95 96 97
    this->AcquireForwardPrimitiveDescriptor(attrs,
                                            prop_kind::forward_inference,
                                            src_md,
                                            weights_md,
                                            bias_md,
                                            dst_md);
M
mozga-intel 已提交
98 99
  }

100
 private:
101 102 103
  dnnl::primitive_attr CreateFCAttrs(const ExecutionContext& ctx) {
    dnnl::primitive_attr attributes;
    dnnl::post_ops post_operations;
104

105 106
    float sum_scale = 1.0f;
    float activation_scale = 1.0f;
107
    if (phi::funcs::is_int8<T_w>()) {
108 109 110
      std::vector<float> output_shift_scale;
      std::tie(output_shift_scale, sum_scale, activation_scale) =
          GetOutputScales(ctx);
111
      int mask = CreateMask(1, output_shift_scale.size() > 1);
112
      attributes.set_output_scales(mask, output_shift_scale);
113
    }
114

115 116
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
117
      post_operations.append_sum(sum_scale);
118
    }
M
mozga-intel 已提交
119

120 121 122
    // ReLU from "fc_fuse_pass"
    if (ctx.Attr<std::string>("activation_type") == "relu") {
      post_operations.append_eltwise(
123
          activation_scale, dnnl::algorithm::eltwise_relu, 0.0f, 0.0f);
124
    }
125
    platform::AppendActivation(ctx, post_operations, activation_scale);
126

127 128 129 130 131 132
    if (ctx.HasAttr("fused_output_scale")) {
      float scale_alpha = ctx.Attr<float>("fused_output_scale");
      post_operations.append_eltwise(
          1.0, dnnl::algorithm::eltwise_linear, scale_alpha, 0.0f);
    }

133 134
    attributes.set_post_ops(post_operations);
    return attributes;
135 136
  }

M
Michał Gallus 已提交
137 138
  // Compute the bias scales so that its values correspond to the
  // scale of data being an output of weights and input multiplication
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
  std::vector<float> GetBiasScales(const framework::ExecutionContext& ctx) {
    if (ctx.HasAttr("Bias_scales")) {
      return ctx.Attr<std::vector<float>>("Bias_scales");
    } else {
      const float scale_in = ctx.Attr<float>("Scale_in");
      const auto& scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");
      std::vector<float> bias_scales(scale_weights.size());

      for (size_t i = 0; i < bias_scales.size(); ++i) {
        if (scale_weights[i] == 0.0)
          bias_scales[i] = 1.0f;
        else
          bias_scales[i] = scale_in * scale_weights[i];
      }
      return bias_scales;
M
Michał Gallus 已提交
154 155 156 157 158 159 160 161
    }
  }

  // Correct output scale, to take into account scaling of input and weights
  // Since the data that comes out of input and weight multiplication is
  // scaled with its own scales, this data needs to be divided by
  // those scales to normalise them back to what their floating-point range
  // was. Then we multiply them by desired output scale we want on the output.
162
  std::tuple<std::vector<float>, float, float> GetOutputScales(
163
      const ExecutionContext& ctx) {
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
    if (ctx.HasAttr("Sum_scale")) {
      return std::make_tuple(ctx.Attr<std::vector<float>>("Output_shift_scale"),
                             ctx.Attr<float>("Sum_scale"),
                             ctx.Attr<float>("Activation_scale"));
    } else {
      auto scale_in_data = ctx.Attr<float>("Scale_in");
      auto scale_weights_data = ctx.Attr<std::vector<float>>("Scale_weights");
      bool has_activation = !ctx.Attr<std::string>("activation_type").empty();
      bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
      bool fuse_residual_conn = ctx.HasAttr("fuse_residual_connection") &&
                                ctx.Attr<bool>("fuse_residual_connection");
      auto scale_in_eltwise_data = ctx.HasAttr("Scale_in_eltwise")
                                       ? ctx.Attr<float>("Scale_in_eltwise")
                                       : 1.0f;

      // If the output will be in floats, we don't multiply by scale_out.

      float activation_scale = (!force_fp32_output && has_activation)
                                   ? ctx.Attr<float>("Scale_out")
                                   : 1.0f;
      float scale_out_data = (force_fp32_output || has_activation)
                                 ? 1.0f
                                 : ctx.Attr<float>("Scale_out");
      float sum_scale =
          fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f;
      const size_t weight_scales_num = scale_weights_data.size();

      for (size_t i = 0; i < weight_scales_num; ++i) {
        if (scale_weights_data[i] == 0.0)
          scale_weights_data[i] = scale_out_data;
        else
          scale_weights_data[i] =
              scale_out_data / (scale_in_data * scale_weights_data[i]);
      }
      return std::make_tuple(scale_weights_data, sum_scale, activation_scale);
M
Michał Gallus 已提交
199 200 201 202 203 204 205 206 207 208 209
    }
  }

  // Computing MKL-DNN's scaling mask which determines along which dimension
  // slice should the scaling be applied. For more data plase refer to:
  // https://intel.github.io/mkl-dnn/group__c__api__attributes.html
  // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales
  int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) {
    return is_multi_channel_quantizied ? 1 << slice_dimension : 0;
  }

210 211 212 213 214 215
  std::shared_ptr<dnnl::memory> AcquireMemoryWithReorderAndAttrs(
      const dnnl::memory::desc& user_md,
      const dnnl::memory::desc& target_md,
      void* ptr,
      const dnnl::primitive_attr& attrs) {
    std::shared_ptr<dnnl::memory> target_memory_p;
M
Michał Gallus 已提交
216

217 218 219 220 221
    auto user_memory_p =
        std::make_shared<dnnl::memory>(user_md, this->engine_, ptr);
    target_memory_p = std::make_shared<dnnl::memory>(target_md, this->engine_);
    auto reorder_p = std::make_shared<dnnl::reorder>(
        *user_memory_p, *target_memory_p, attrs);
M
Michał Gallus 已提交
222

223
    auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
224 225 226 227 228 229 230 231 232 233 234
    {
      platform::RecordEvent record_reorder(
          "int_reorder",
          platform::TracerEventType::UserDefined,
          1,
          platform::EventRole::kUniqueOp);
      reorder_p->execute(
          astream,
          {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}});
      astream.wait();
    }
M
Michał Gallus 已提交
235

236 237
    return target_memory_p;
  }
238

239 240
  std::string memory_key_;
  const platform::MKLDNNDeviceContext& dev_ctx_;
M
Michał Gallus 已提交
241

242
 public:
243 244
  std::shared_ptr<dnnl::memory> AcquireSrcMemoryWithReorder(
      const phi::DenseTensor* x) {
245 246 247 248 249 250 251
    const T_in* x_data = x->data<T_in>();

    auto user_md = x->mem_desc();
    if (x->dims().size() != 2) {
      // reshape restrictions are always satisfied because in case of 3 or 4 dim
      // input, plain layout is enforced
      user_md = user_md.reshape(this->fwd_pd_->src_desc().dims());
M
Michał Gallus 已提交
252 253
    }

254 255
    return this->AcquireMemoryWithReorder(
        user_md, this->fwd_pd_->src_desc(), to_void_cast<T_in>(x_data));
256
  }
M
mozga-intel 已提交
257

258
  std::shared_ptr<dnnl::memory> AcquireBiasMemoryWithReorder(
259
      const framework::ExecutionContext& ctx, const phi::DenseTensor* bias) {
260 261
    const float* bias_data = bias->data<float>();

262
    if (phi::funcs::is_int8<T_w>() == false) {
263 264 265 266 267 268 269 270 271
      // for BF16/FP32 bias is 1D and has no scales, so reorder is not needed
      return this->AcquireMemoryFromPrimitive(this->fwd_pd_->bias_desc(),
                                              to_void_cast<float>(bias_data));
    } else {
      const std::string bias_key = this->memory_key_ + "@bias";
      auto memory_p = std::static_pointer_cast<dnnl::memory>(
          this->dev_ctx_.GetBlob(bias_key));

      if (!memory_p) {
272
        const auto& scale_data = GetBiasScales(ctx);
273 274 275 276 277 278
        dnnl::primitive_attr attrs;

        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        auto user_md = dnnl::memory::desc({bias->dims()[0]},
279
                                          OneDNNGetDataType<float>(),
280 281 282 283 284 285 286
                                          dnnl::memory::format_tag::a);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->bias_desc(),
            to_void_cast<float>(bias_data),
            attrs);
287
        this->dev_ctx_.SetBlob(bias_key, memory_p);
288 289 290 291 292 293
      }
      return memory_p;
    }
  }

  std::shared_ptr<dnnl::memory> AcquireWeightsMemoryWithReorder(
294
      const phi::DenseTensor* weights, const std::vector<float>& scale_data) {
295 296 297
    const std::string weights_key = this->memory_key_ + "@weights";
    auto memory_p = std::static_pointer_cast<dnnl::memory>(
        this->dev_ctx_.GetBlob(weights_key));
M
mozga-intel 已提交
298

299 300 301 302 303
    if (!memory_p) {
      const float* weights_data = weights->data<float>();
      auto weights_dims = this->fwd_pd_->weights_desc().dims();

      auto user_md = dnnl::memory::desc(weights_dims,
304
                                        OneDNNGetDataType<float>(),
305 306
                                        dnnl::memory::format_tag::io);

307
      if (phi::funcs::is_int8<T_w>()) {
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
        dnnl::primitive_attr attrs;
        int mask = CreateMask(0, scale_data.size() > 1);
        attrs.set_output_scales(mask, scale_data);

        memory_p = this->AcquireMemoryWithReorderAndAttrs(
            user_md,
            this->fwd_pd_->weights_desc(),
            to_void_cast<float>(weights_data),
            attrs);
      } else {
        memory_p =
            this->AcquireMemoryWithReorder(user_md,
                                           this->fwd_pd_->weights_desc(),
                                           to_void_cast<float>(weights_data));
      }

      this->dev_ctx_.SetBlob(weights_key, memory_p);
    }
    return memory_p;
327
  }
M
mozga-intel 已提交
328

329
  std::shared_ptr<dnnl::memory> AcquireCustomDstMemory(
330
      const ExecutionContext& ctx, phi::DenseTensor* out) {
331 332
    if (ctx.HasAttr("fuse_residual_connection") &&
        ctx.Attr<bool>("fuse_residual_connection")) {
333
      auto* residual_param = ctx.Input<phi::DenseTensor>("ResidualData");
334 335

      PADDLE_ENFORCE_EQ(
336
          out->dims(),
337
          residual_param->dims(),
338 339 340 341
          platform::errors::InvalidArgument(
              "Output and elementwise parameter need to have the "
              "same dimension sizes, but got output's dimension = %d"
              " and residual param's dimension =%d .",
342
              out->dims().size(),
343
              residual_param->dims().size()));
344

345
      out->ShareDataWith(*residual_param);
346
    }
347
    return this->template AcquireDstMemory<T_out>(out);
348 349
  }  // namespace operators
};   // namespace paddle
350

351 352 353 354 355 356 357 358 359 360
#define IF_CHANGE_FC_TW_TYPENAME(condition, ...) \
  if (condition) {                               \
    using T_w = int8_t;                          \
    __VA_ARGS__();                               \
  } else {                                       \
    using T_w = T_in;                            \
    __VA_ARGS__();                               \
  }

template <typename T_in>
361 362 363 364 365
class FCMKLDNNKernel : public framework::OpKernel<T_in> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    bool force_fp32_output = ctx.Attr<bool>("force_fp32_output");
    bool fuse_relu = ctx.Attr<std::string>("activation_type") == "relu";
366

367 368 369
    IF_CHANGE_FC_TW_TYPENAME((std::is_same<T_in, uint8_t>::value), ([&] {
                               if (force_fp32_output) {
                                 this->RunKernel<float, T_w>(ctx);
370
                               } else if (phi::funcs::is_int8<T_in>()) {
371 372 373 374 375 376 377 378 379
                                 if (fuse_relu) {
                                   this->RunKernel<uint8_t, T_w>(ctx);
                                 } else {
                                   this->RunKernel<int8_t, T_w>(ctx);
                                 }
                               } else {
                                 this->RunKernel<T_in, T_w>(ctx);
                               }
                             }));
380 381
  }

382 383
  void PrepareSrcMem(const std::shared_ptr<inner_product_forward>& fc_p,
                     const std::shared_ptr<dnnl::memory>& src_mem,
384
                     const phi::DenseTensor* x,
385 386 387 388 389 390 391 392 393 394 395 396 397 398
                     const dnnl::engine& engine) const {
    auto x_md = x->mem_desc().reshape(src_mem->get_desc().dims());
    if (x_md != src_mem->get_desc()) {
      dnnl::memory x_mem(x_md, engine, to_void_cast<T_in>(x->data<T_in>()));
      auto reorder_p = dnnl::reorder(x_mem, *src_mem);

      auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();
      reorder_p.execute(astream, x_mem, *src_mem);
      astream.wait();
    } else {
      src_mem->set_data_handle(to_void_cast<T_in>(x->data<T_in>()));
    }
  }

399
  template <typename T_out, typename T_w>
400 401 402 403 404
  void RunKernel(const framework::ExecutionContext& ctx) const {
    const auto& dev_ctx =
        ctx.template device_context<platform::MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

405
    const auto* x = ctx.Input<phi::DenseTensor>("Input");
406 407
    const auto* weights = ctx.Input<phi::DenseTensor>("W");
    const auto* bias = ctx.Input<phi::DenseTensor>("Bias");
408
    auto out = ctx.Output<phi::DenseTensor>("Out");
409 410 411

    const auto& scale_weights = ctx.Attr<std::vector<float>>("Scale_weights");

412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
    std::shared_ptr<dnnl::inner_product_forward> fc_p;
    std::shared_ptr<dnnl::memory> src_memory_p;
    std::shared_ptr<dnnl::memory> weights_memory_p;
    std::shared_ptr<dnnl::memory> bias_memory_p;
    std::shared_ptr<dnnl::memory> dst_memory_p;

    std::string cache_key;
    cache_key.reserve(64);
    cache_key = platform::ExtendKeyWithThreadInfoIfNeeded(
        dev_ctx,
        platform::CreateKey(dev_ctx,
                            ctx.InputName("Input"),
                            ctx.InputName("W"),
                            phi::vectorize(x->dims())));

    auto inner_product_cache =
        std::static_pointer_cast<InnerProductCache>(dev_ctx.GetBlob(cache_key));

430 431
    RecomputeOutputDims(ctx, x, weights, out);

432 433 434 435 436 437 438 439 440 441 442 443 444 445
    if (inner_product_cache) {
      fc_p = std::make_shared<dnnl::inner_product_forward>(
          inner_product_cache->inner_product_p);
      src_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->src_mem);
      PrepareSrcMem(fc_p, src_memory_p, x, mkldnn_engine);

      weights_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->weights_mem);

      dst_memory_p =
          std::make_shared<dnnl::memory>(inner_product_cache->dst_mem);
      if (ctx.HasAttr("fuse_residual_connection") &&
          ctx.Attr<bool>("fuse_residual_connection")) {
446
        auto* residual_param = ctx.Input<phi::DenseTensor>("ResidualData");
447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
        out->ShareDataWith(*residual_param);
      }
      auto out_ptr = out->mutable_data<T_out>(
          ctx.GetPlace(), dst_memory_p->get_desc().get_size());
      dst_memory_p->set_data_handle(out_ptr);

      if (bias) {
        bias_memory_p =
            std::make_shared<dnnl::memory>(inner_product_cache->bias_mem);
      }
    } else {
      auto in_col_dims = ctx.Attr<int>("in_num_col_dims");

      FCMKLDNNHandler<T_in, T_w, T_out> handler(ctx,
                                                dev_ctx,
                                                x,
                                                weights,
                                                bias,
                                                out,
                                                in_col_dims,
                                                mkldnn_engine,
                                                ctx.GetPlace());

      src_memory_p = handler.AcquireSrcMemoryWithReorder(x);
      weights_memory_p =
          handler.AcquireWeightsMemoryWithReorder(weights, scale_weights);
      dst_memory_p = handler.AcquireCustomDstMemory(ctx, out);

      if (bias) {
476
        bias_memory_p = handler.AcquireBiasMemoryWithReorder(ctx, bias);
477 478 479 480 481
      }

      fc_p = handler.AcquireForwardPrimitive();
    }

482 483 484 485 486 487 488 489 490 491 492 493 494 495
    auto& astream = paddle::platform::MKLDNNDeviceContext::tls().get_stream();

    std::unordered_map<int, dnnl::memory> fc_args = {
        {DNNL_ARG_SRC, *src_memory_p},
        {DNNL_ARG_WEIGHTS, *weights_memory_p},
        {DNNL_ARG_DST, *dst_memory_p}};

    if (bias) {
      fc_args.insert({DNNL_ARG_BIAS, *bias_memory_p});
    }

    fc_p->execute(astream, fc_args);
    astream.wait();

496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
    if (!inner_product_cache) {
      auto ip_cache = std::make_shared<InnerProductCache>();
      ip_cache->inner_product_p = *fc_p;
      ip_cache->src_mem = *src_memory_p;
      ip_cache->weights_mem = *weights_memory_p;
      ip_cache->dst_mem = *dst_memory_p;
      if (bias) {
        ip_cache->bias_mem = *bias_memory_p;
      }
      dev_ctx.SetBlob(cache_key, ip_cache);
    }

    platform::SetOutMemDescWithLogicalLayoutFusesSupport(
        ctx,
        out,
511
        dst_memory_p->get_desc().reshape(phi::vectorize(out->dims())));
512
  }
M
mozga-intel 已提交
513

514
  void RecomputeOutputDims(const ExecutionContext& ctx,
515
                           const phi::DenseTensor* x,
516
                           const phi::DenseTensor* weights,
517
                           phi::DenseTensor* out) const {
L
luotao1 已提交
518
    int in_num_col_dims = ctx.Attr<int>("in_num_col_dims");
519
    bool padding_weights = ctx.Attr<bool>("padding_weights");
520 521
    PADDLE_ENFORCE_EQ(padding_weights,
                      false,
522 523
                      platform::errors::PermissionDenied(
                          "Weight padding in fc can not be used in MKLDNN."));
L
luotao1 已提交
524
    std::vector<int64_t> output_dims;
525 526
    FCOutputSize(x->dims(),
                 weights->dims(),
527 528
                 output_dims,
                 in_num_col_dims,
529
                 padding_weights);
530 531
    out->Resize(phi::make_ddim(output_dims));
    out->set_lod(x->lod());
532 533
  }
};
M
mozga-intel 已提交
534 535 536 537

}  // namespace operators
}  // namespace paddle

M
Michał Gallus 已提交
538 539 540 541
// Weights of FC are by default stored using fp32, template argument of weight
// data type implies their destination data type. (What's eventually going to
// be used during computations of kernel).
namespace ops = paddle::operators;
542 543 544 545 546 547 548 549

REGISTER_OP_KERNEL(fc,
                   MKLDNN,
                   ::paddle::platform::CPUPlace,
                   ops::FCMKLDNNKernel<float>,
                   ops::FCMKLDNNKernel<paddle::platform::bfloat16>,
                   ops::FCMKLDNNKernel<uint8_t>,
                   ops::FCMKLDNNKernel<int8_t>);