generate_proposals_op.cc 12.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15 16
#include <cmath>
#include <cstring>
17 18 19
#include <string>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
21 22
#include "paddle/fluid/operators/detection/bbox_util.h"
#include "paddle/fluid/operators/detection/nms_util.h"
23 24 25 26 27 28 29 30 31 32 33 34 35 36
#include "paddle/fluid/operators/gather.h"
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

class GenerateProposalsOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext *ctx) const override {
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Scores"), true,
        platform::errors::NotFound("Input(Scores) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("BboxDeltas"), true,
        platform::errors::NotFound("Input(BboxDeltas) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("ImInfo"), true,
        platform::errors::NotFound("Input(ImInfo) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Anchors"), true,
        platform::errors::NotFound("Input(Anchors) shouldn't be null."));
    PADDLE_ENFORCE_EQ(
        ctx->HasInput("Variances"), true,
        platform::errors::NotFound("Input(Variances) shouldn't be null."));
52 53 54

    ctx->SetOutputDim("RpnRois", {-1, 4});
    ctx->SetOutputDim("RpnRoiProbs", {-1, 1});
55 56 57 58
    if (!ctx->IsRuntime()) {
      ctx->SetLoDLevel("RpnRois", std::max(ctx->GetLoDLevel("Scores"), 1));
      ctx->SetLoDLevel("RpnRoiProbs", std::max(ctx->GetLoDLevel("Scores"), 1));
    }
59 60 61 62 63
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext &ctx) const override {
64 65 66
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "Anchors"),
        ctx.device_context());
67 68 69
  }
};

70
template <typename T>
71 72 73 74 75 76
class GenerateProposalsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *scores = context.Input<Tensor>("Scores");
    auto *bbox_deltas = context.Input<Tensor>("BboxDeltas");
    auto *im_info = context.Input<Tensor>("ImInfo");
77 78 79 80
    auto anchors = GET_DATA_SAFELY(context.Input<Tensor>("Anchors"), "Input",
                                   "Anchors", "GenerateProposals");
    auto variances = GET_DATA_SAFELY(context.Input<Tensor>("Variances"),
                                     "Input", "Variances", "GenerateProposals");
81 82 83 84 85 86 87 88 89 90

    auto *rpn_rois = context.Output<LoDTensor>("RpnRois");
    auto *rpn_roi_probs = context.Output<LoDTensor>("RpnRoiProbs");

    int pre_nms_top_n = context.Attr<int>("pre_nms_topN");
    int post_nms_top_n = context.Attr<int>("post_nms_topN");
    float nms_thresh = context.Attr<float>("nms_thresh");
    float min_size = context.Attr<float>("min_size");
    float eta = context.Attr<float>("eta");

91 92
    auto &dev_ctx =
        context.template device_context<platform::CPUDeviceContext>();
93

94
    auto &scores_dim = scores->dims();
95 96 97 98 99
    int64_t num = scores_dim[0];
    int64_t c_score = scores_dim[1];
    int64_t h_score = scores_dim[2];
    int64_t w_score = scores_dim[3];

100
    auto &bbox_dim = bbox_deltas->dims();
101 102 103 104 105 106
    int64_t c_bbox = bbox_dim[1];
    int64_t h_bbox = bbox_dim[2];
    int64_t w_bbox = bbox_dim[3];

    rpn_rois->mutable_data<T>({bbox_deltas->numel() / 4, 4},
                              context.GetPlace());
107
    rpn_roi_probs->mutable_data<T>({scores->numel(), 1}, context.GetPlace());
108 109 110 111 112 113 114

    Tensor bbox_deltas_swap, scores_swap;
    bbox_deltas_swap.mutable_data<T>({num, h_bbox, w_bbox, c_bbox},
                                     dev_ctx.GetPlace());
    scores_swap.mutable_data<T>({num, h_score, w_score, c_score},
                                dev_ctx.GetPlace());

115
    math::Transpose<platform::CPUDeviceContext, T, 4> trans;
116 117 118 119 120
    std::vector<int> axis = {0, 2, 3, 1};
    trans(dev_ctx, *bbox_deltas, &bbox_deltas_swap, axis);
    trans(dev_ctx, *scores, &scores_swap, axis);

    framework::LoD lod;
121 122 123 124 125
    lod.resize(1);
    auto &lod0 = lod[0];
    lod0.push_back(0);
    anchors.Resize({anchors.numel() / 4, 4});
    variances.Resize({variances.numel() / 4, 4});
126
    std::vector<int> tmp_num;
127 128 129 130 131 132 133 134 135 136 137

    int64_t num_proposals = 0;
    for (int64_t i = 0; i < num; ++i) {
      Tensor im_info_slice = im_info->Slice(i, i + 1);
      Tensor bbox_deltas_slice = bbox_deltas_swap.Slice(i, i + 1);
      Tensor scores_slice = scores_swap.Slice(i, i + 1);

      bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox / 4, 4});
      scores_slice.Resize({h_score * w_score * c_score, 1});

      std::pair<Tensor, Tensor> tensor_pair =
138
          ProposalForOneImage(dev_ctx, im_info_slice, anchors, variances,
139 140
                              bbox_deltas_slice, scores_slice, pre_nms_top_n,
                              post_nms_top_n, nms_thresh, min_size, eta);
141 142
      Tensor &proposals = tensor_pair.first;
      Tensor &scores = tensor_pair.second;
143

144 145
      AppendProposals(rpn_rois, 4 * num_proposals, proposals);
      AppendProposals(rpn_roi_probs, num_proposals, scores);
146
      num_proposals += proposals.dims()[0];
147
      lod0.push_back(num_proposals);
148
      tmp_num.push_back(proposals.dims()[0]);
F
FDInSky 已提交
149
    }
150 151 152 153
    if (context.HasOutput("RpnRoisNum")) {
      auto *rpn_rois_num = context.Output<Tensor>("RpnRoisNum");
      rpn_rois_num->mutable_data<int>({num}, context.GetPlace());
      int *num_data = rpn_rois_num->data<int>();
F
FDInSky 已提交
154
      for (int i = 0; i < num; i++) {
155
        num_data[i] = tmp_num[i];
F
FDInSky 已提交
156
      }
157
      rpn_rois_num->Resize({num});
158 159 160 161 162 163 164 165
    }
    rpn_rois->set_lod(lod);
    rpn_roi_probs->set_lod(lod);
    rpn_rois->Resize({num_proposals, 4});
    rpn_roi_probs->Resize({num_proposals, 1});
  }

  std::pair<Tensor, Tensor> ProposalForOneImage(
166
      const platform::CPUDeviceContext &ctx, const Tensor &im_info_slice,
167 168 169 170 171 172 173 174 175 176 177 178 179 180
      const Tensor &anchors, const Tensor &variances,
      const Tensor &bbox_deltas_slice,  // [M, 4]
      const Tensor &scores_slice,       // [N, 1]
      int pre_nms_top_n, int post_nms_top_n, float nms_thresh, float min_size,
      float eta) const {
    auto *scores_data = scores_slice.data<T>();

    // Sort index
    Tensor index_t;
    index_t.Resize({scores_slice.numel()});
    int *index = index_t.mutable_data<int>(ctx.GetPlace());
    for (int i = 0; i < scores_slice.numel(); ++i) {
      index[i] = i;
    }
181 182 183
    auto compare = [scores_data](const int64_t &i, const int64_t &j) {
      return scores_data[i] > scores_data[j];
    };
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207

    if (pre_nms_top_n <= 0 || pre_nms_top_n >= scores_slice.numel()) {
      std::sort(index, index + scores_slice.numel(), compare);
    } else {
      std::nth_element(index, index + pre_nms_top_n,
                       index + scores_slice.numel(), compare);
      index_t.Resize({pre_nms_top_n});
    }

    Tensor scores_sel, bbox_sel, anchor_sel, var_sel;
    scores_sel.mutable_data<T>({index_t.numel(), 1}, ctx.GetPlace());
    bbox_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    anchor_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    var_sel.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());

    CPUGather<T>(ctx, scores_slice, index_t, &scores_sel);
    CPUGather<T>(ctx, bbox_deltas_slice, index_t, &bbox_sel);
    CPUGather<T>(ctx, anchors, index_t, &anchor_sel);
    CPUGather<T>(ctx, variances, index_t, &var_sel);

    Tensor proposals;
    proposals.mutable_data<T>({index_t.numel(), 4}, ctx.GetPlace());
    BoxCoder<T>(ctx, &anchor_sel, &bbox_sel, &var_sel, &proposals);

208
    ClipTiledBoxes<T>(ctx, im_info_slice, proposals, &proposals, false);
209 210

    Tensor keep;
211
    FilterBoxes<T>(ctx, &proposals, min_size, im_info_slice, true, &keep);
212 213 214 215 216 217 218 219 220 221
    // Handle the case when there is no keep index left
    if (keep.numel() == 0) {
      math::SetConstant<platform::CPUDeviceContext, T> set_zero;
      bbox_sel.mutable_data<T>({1, 4}, ctx.GetPlace());
      set_zero(ctx, &bbox_sel, static_cast<T>(0));
      Tensor scores_filter;
      scores_filter.mutable_data<T>({1, 1}, ctx.GetPlace());
      set_zero(ctx, &scores_filter, static_cast<T>(0));
      return std::make_pair(bbox_sel, scores_filter);
    }
222 223 224 225 226 227 228

    Tensor scores_filter;
    bbox_sel.mutable_data<T>({keep.numel(), 4}, ctx.GetPlace());
    scores_filter.mutable_data<T>({keep.numel(), 1}, ctx.GetPlace());
    CPUGather<T>(ctx, proposals, keep, &bbox_sel);
    CPUGather<T>(ctx, scores_sel, keep, &scores_filter);
    if (nms_thresh <= 0) {
229
      return std::make_pair(bbox_sel, scores_filter);
230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
    }

    Tensor keep_nms = NMS<T>(ctx, &bbox_sel, &scores_filter, nms_thresh, eta);

    if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
      keep_nms.Resize({post_nms_top_n});
    }

    proposals.mutable_data<T>({keep_nms.numel(), 4}, ctx.GetPlace());
    scores_sel.mutable_data<T>({keep_nms.numel(), 1}, ctx.GetPlace());
    CPUGather<T>(ctx, bbox_sel, keep_nms, &proposals);
    CPUGather<T>(ctx, scores_filter, keep_nms, &scores_sel);

    return std::make_pair(proposals, scores_sel);
  }
};

class GenerateProposalsOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
    AddInput("Scores",
             "(Tensor) The scores from conv is in shape (N, A, H, W), "
             "N is batch size, A is number of anchors, "
             "H and W are height and width of the feature map");
    AddInput("BboxDeltas",
             "(Tensor) Bounding box deltas from conv is in "
             "shape (N, 4*A, H, W).");
    AddInput("ImInfo",
             "(Tensor) Information for image reshape is in shape (N, 3), "
             "in format (height, width, scale)");
    AddInput("Anchors",
             "(Tensor) Bounding box anchors from anchor_generator_op "
             "is in shape (A, H, W, 4).");
    AddInput("Variances",
             "(Tensor) Bounding box variances with same shape as `Anchors`.");

    AddOutput("RpnRois",
              "(LoDTensor), Output proposals with shape (rois_num, 4).");
    AddOutput("RpnRoiProbs",
              "(LoDTensor) Scores of proposals with shape (rois_num, 1).");
270 271
    AddOutput("RpnRoisNum", "(Tensor), The number of Rpn RoIs in each image")
        .AsDispensable();
272 273 274 275 276 277 278 279 280 281
    AddAttr<int>("pre_nms_topN",
                 "Number of top scoring RPN proposals to keep before "
                 "applying NMS.");
    AddAttr<int>("post_nms_topN",
                 "Number of top scoring RPN proposals to keep after "
                 "applying NMS");
    AddAttr<float>("nms_thresh", "NMS threshold used on RPN proposals.");
    AddAttr<float>("min_size",
                   "Proposal height and width both need to be greater "
                   "than this min_size.");
282
    AddAttr<float>("eta", "The parameter for adaptive NMS.");
283
    AddComment(R"DOC(
284 285 286 287 288 289
This operator Generate bounding box proposals for Faster RCNN.
The propoasls are generated for a list of images based on image
score 'Scores', bounding box regression result 'BboxDeltas' as
well as predefined bounding box shapes 'anchors'. Greedy
non-maximum suppression is applied to generate the final bounding
boxes.
290 291 292 293 294 295 296 297 298

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
hong 已提交
299 300 301 302
REGISTER_OPERATOR(
    generate_proposals, ops::GenerateProposalsOp, ops::GenerateProposalsOpMaker,
    paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
    paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
303 304
REGISTER_OP_CPU_KERNEL(generate_proposals, ops::GenerateProposalsKernel<float>,
                       ops::GenerateProposalsKernel<double>);
305
REGISTER_OP_VERSION(generate_proposals)
306 307 308 309 310 311 312
    .AddCheckpoint(
        R"ROC(
              Incompatible upgrade of output [RpnRoisLod])ROC",
        paddle::framework::compatible::OpVersionDesc().DeleteOutput(
            "RpnRoisLod",
            "Delete RpnRoisLod due to incorrect output name and "
            "it is not used in object detection models yet."))
313 314 315 316 317 318 319
    .AddCheckpoint(
        R"ROC(
              Upgrade generate_proposals add a new output [RpnRoisNum])ROC",
        paddle::framework::compatible::OpVersionDesc().NewOutput(
            "RpnRoisNum",
            "The number of Rpn RoIs in each image. RpnRoisNum is "
            "dispensable."));