cinn_compiler_test.cc 9.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"

17
#include <algorithm>
18 19
#include <map>
#include <memory>
20
#include <ostream>
21
#include <string>
22 23 24
#include <unordered_map>
#include <unordered_set>
#include <vector>
25 26

#include "cinn/common/target.h"
27 28
#include "gflags/gflags.h"
#include "glog/logging.h"
29
#include "gtest/gtest.h"
30
#include "paddle/fluid/framework/ddim.h"
31 32 33 34 35 36 37 38 39
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"

40 41 42
DECLARE_string(allow_cinn_ops);
DECLARE_string(deny_cinn_ops);

43 44 45 46 47 48
namespace paddle {
namespace framework {
namespace paddle2cinn {
using ir::Graph;
using ::cinn::common::Target;

49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
namespace {
template <typename T, typename Alloc = std::allocator<T>>
std::ostream& operator<<(std::ostream& os, const std::vector<T, Alloc>& vec) {
  os << "{ ";
  for (auto e : vec) {
    os << e << " ";
  }
  os << "}\n";
  return os;
}

// Get compilation_key values
std::vector<std::string> GetCompilationKeys(const Graph& graph) {
  std::vector<std::string> compilation_keys;
  for (auto& node : graph.Nodes()) {
    if (node->IsOp() && node->Name() == kCinnLaunchOp) {
      compilation_keys.emplace_back(
          BOOST_GET_CONST(std::string, node->Op()->GetAttr(kCompilationKey)));
    }
  }
  return compilation_keys;
}

// Extract op types from a graph
std::unordered_set<std::string> ExtractOpTypes(const Graph& graph) {
  std::unordered_set<std::string> op_types;
  for (auto& node : graph.Nodes()) {
    if (node->IsOp()) {
      op_types.emplace(node->Name());
    }
  }
  return op_types;
}

// Get inputs info
std::unordered_map<std::string, std::vector<int64_t>> GetInputsInfo(
    const std::string& key, const Graph& graph) {
  std::unordered_set<std::string> inputs;
  for (auto& node : graph.Nodes()) {
    if (node->IsOp() && node->Name() == kCinnLaunchOp) {
      if (BOOST_GET_CONST(std::string, node->Op()->GetAttr(kCompilationKey)) !=
          key) {
        continue;
      }
      for (auto in_var_name : node->Op()->InputArgumentNames()) {
        VLOG(4) << "get an input name: " << in_var_name;
        inputs.emplace(in_var_name);
      }
    }
  }

  std::unordered_map<std::string, std::vector<int64_t>> inputs_info;
  for (auto& node : graph.Nodes()) {
    if (node->IsVar() && inputs.count(node->Name())) {
      VLOG(4) << node->Name() << " : " << node->Var()->GetShape();
      inputs_info.emplace(node->Name(), node->Var()->GetShape());
    }
  }
  return inputs_info;
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
//  X -
//     | -> mul -> MUL_OUT -
//  Y -                     | -> elementwise_add -> ADD_OUT -> relu -> RELU_OUT
//                       Z -
std::unique_ptr<Graph> CreateGraph() {
  ProgramDesc program;
  auto* global_block = program.MutableBlock(0);
  // mul
  auto* x = global_block->Var("X");
  x->SetType(proto::VarType::LOD_TENSOR);
  x->SetLoDLevel(0);
  x->SetDataType(proto::VarType::FP32);
  x->SetShape({1000, 784});

  auto* y = global_block->Var("Y");
  y->SetType(proto::VarType::LOD_TENSOR);
  y->SetLoDLevel(0);
  y->SetDataType(proto::VarType::FP32);
  y->SetShape({784, 100});
  y->SetPersistable(true);
  y->SetIsParameter(true);

  auto* mul_op = global_block->AppendOp();
  mul_op->SetType("mul");
  mul_op->SetInput("X", {x->Name()});
  mul_op->SetInput("Y", {y->Name()});

  auto* mul_out = global_block->Var("MUL_OUT");
  mul_out->SetType(proto::VarType::LOD_TENSOR);
139 140 141
  mul_out->SetLoDLevel(0);
  mul_out->SetDataType(proto::VarType::FP32);
  mul_out->SetShape({1000, 100});
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
  mul_op->SetOutput("Out", {mul_out->Name()});

  // add
  auto* z = global_block->Var("Z");
  z->SetType(proto::VarType::LOD_TENSOR);
  z->SetLoDLevel(0);
  z->SetDataType(proto::VarType::FP32);
  z->SetShape({100});
  z->SetPersistable(true);
  z->SetIsParameter(true);

  auto* add_op = global_block->AppendOp();
  add_op->SetType("elementwise_add");
  add_op->SetInput("X", {mul_out->Name()});
  add_op->SetInput("Y", {z->Name()});

  auto* add_out = global_block->Var("ADD_OUT");
  add_out->SetType(proto::VarType::LOD_TENSOR);
160 161 162
  add_out->SetLoDLevel(0);
  add_out->SetDataType(proto::VarType::FP32);
  add_out->SetShape({1000, 100});
163 164 165 166 167 168 169 170 171
  add_op->SetOutput("Out", {add_out->Name()});

  // relu
  auto* relu_op = global_block->AppendOp();
  relu_op->SetType("relu");
  relu_op->SetInput("X", {add_out->Name()});

  auto* relu_out = global_block->Var("RELU_OUT");
  relu_out->SetType(proto::VarType::LOD_TENSOR);
172 173 174
  relu_out->SetLoDLevel(0);
  relu_out->SetDataType(proto::VarType::FP32);
  relu_out->SetShape({1000, 100});
175 176 177 178 179
  relu_op->SetOutput("Out", {relu_out->Name()});
  program.Flush();
  return std::make_unique<Graph>(program);
}

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
}  // namespace

TEST(CinnCompilerTest, FlagController) {
  // init
  auto* cinn_compiler = CinnCompiler::GetInstance();
  auto cinn_pass = ir::PassRegistry::Instance().Get("build_cinn_pass");
  // apply build_cinn_pass & FLAGS_allow_cinn_ops="add"
  {
    FLAGS_allow_cinn_ops = "add";
    auto graph = CreateGraph();
    cinn_compiler->Clear();
    cinn_pass->Apply(graph.get());
    auto compilation_keys = GetCompilationKeys(*graph);
    ASSERT_EQ(compilation_keys.size(), 0);
  }
  // apply build_cinn_pass & FLAGS_allow_cinn_ops="mul;relu"
  {
    FLAGS_allow_cinn_ops = "mul;relu";
    auto graph = CreateGraph();
    cinn_compiler->Clear();
    cinn_pass->Apply(graph.get());
    auto compilation_keys = GetCompilationKeys(*graph);
    ASSERT_EQ(compilation_keys.size(), 2);
  }
  // apply build_cinn_pass & FLAGS_allow_cinn_ops="" &
  // FLAGS_deny_cinn_ops="relu"
  {
    FLAGS_allow_cinn_ops = "";
    FLAGS_deny_cinn_ops = "elementwise_add;relu";
    auto graph = CreateGraph();
    cinn_compiler->Clear();
    cinn_pass->Apply(graph.get());
    auto compilation_keys = GetCompilationKeys(*graph);
    ASSERT_EQ(compilation_keys.size(), 1);
    const auto& compiling_graph = cinn_compiler->FindGraph(compilation_keys[0]);
    auto op_types = ExtractOpTypes(compiling_graph);
216
    ASSERT_EQ(op_types.size(), 3);
217 218
    ASSERT_EQ(op_types.count("feed"), 1);
    ASSERT_EQ(op_types.count("mul"), 1);
219
    ASSERT_EQ(op_types.count("fetch"), 1);
220 221 222 223 224 225
  }
  // recover flags
  FLAGS_allow_cinn_ops = "";
  FLAGS_deny_cinn_ops = "";
}

226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
TEST(CinnCompilerTest, Compile) {
  auto viz_pass = ir::PassRegistry::Instance().Get("graph_viz_pass");
  auto cinn_pass = ir::PassRegistry::Instance().Get("build_cinn_pass");
  auto viz_graph = [&viz_pass](const std::string& viz_path, Graph* graph) {
    viz_pass->Erase("graph_viz_path");
    viz_pass->Set("graph_viz_path", new std::string(viz_path));
    viz_pass->Apply(graph);
  };

  // create a graph
  auto graph = CreateGraph();
  viz_graph("origin_graph.dot", graph.get());
  // apply build_cinn_pass
  cinn_pass->Apply(graph.get());
  viz_graph("processed_graph.dot", graph.get());
  // get the compilation_key
242
  auto compilation_keys = GetCompilationKeys(*graph);
243 244 245 246
  ASSERT_EQ(compilation_keys.size(), 1);

  const auto& compilation_key = compilation_keys[0];
  auto* cinn_compiler = CinnCompiler::GetInstance();
247 248
  VLOG(4) << "The graph to be compiled:\n"
          << cinn_compiler->VizGraph(compilation_key);
249
  const auto& compiling_graph = cinn_compiler->FindGraph(compilation_key);
250
  viz_graph("compiling_graph.dot", const_cast<Graph*>(&compiling_graph));
251 252 253 254

  EXPECT_THROW(cinn_compiler->FindGraph("no_existed"),
               paddle::platform::EnforceNotMet);

255 256 257 258 259 260 261 262 263 264 265 266
  auto inputs_info = GetInputsInfo(compilation_key, *graph);
  std::unordered_map<std::string, LoDTensor> create_inputs;
  for (const auto& pair : inputs_info) {
    auto& tensor = create_inputs[pair.first];
    tensor.Resize(make_ddim(pair.second));
    tensor.mutable_data<float>(platform::CPUPlace());
  }
  std::map<std::string, const LoDTensor*> input_tensors;
  std::for_each(create_inputs.begin(), create_inputs.end(),
                [&input_tensors](const auto& val) {
                  input_tensors.emplace(val.first, &val.second);
                });
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293

  auto compile_fn = [&](const Target& target) {
    const auto& compiled_obj =
        cinn_compiler->Compile(compiling_graph, input_tensors, target);
    ASSERT_NE(compiled_obj.runtime_program, nullptr);
    ASSERT_NE(compiled_obj.scope, nullptr);
    ASSERT_FALSE(compiled_obj.paddle2cinn_varmap.empty());
    const auto& cached_obj =
        cinn_compiler->Compile(compilation_key, input_tensors, target);
    ASSERT_EQ(reinterpret_cast<std::uint64_t>(&compiled_obj),
              reinterpret_cast<std::uint64_t>(&cached_obj));
  };

  // GPU Compilation
  compile_fn(::cinn::common::DefaultNVGPUTarget());
  ASSERT_EQ(cinn_compiler->real_compiled_num(), 1);
  // CPU Compilation
  compile_fn(::cinn::common::DefaultHostTarget());
  ASSERT_EQ(cinn_compiler->real_compiled_num(), 2);
}

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

USE_PASS(build_cinn_pass);
USE_PASS(graph_viz_pass);