test_cholesky_solve_op.py 8.8 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
#   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.w

from __future__ import print_function

import unittest
import numpy as np
import scipy
import scipy.linalg

import sys
sys.path.append("..")
import paddle
from op_test import OpTest
import paddle.fluid as fluid
from paddle.fluid import Program, program_guard, core

paddle.enable_static()


def cholesky_solution(X, B, upper=True):
    if upper:
        A = np.triu(X)
        L = A.T
        U = A
    else:
        A = np.tril(X)
        L = A
        U = A.T
    return scipy.linalg.solve_triangular(
        U, scipy.linalg.solve_triangular(
            L, B, lower=True))


def scipy_cholesky_solution(X, B, upper=True):
    if upper:
        umat = np.triu(X)
        A = umat.T @umat
    else:
        umat = np.tril(X)
        A = umat @umat.T
    K = scipy.linalg.cho_factor(A)
    return scipy.linalg.cho_solve(K, B)


def boardcast_shape(matA, matB):
    shapeA = matA.shape
    shapeB = matB.shape
    Boardshape = []
    for idx in range(len(shapeA) - 2):
        if shapeA[idx] == shapeB[idx]:
            Boardshape.append(shapeA[idx])
            continue
        elif shapeA[idx] == 1 or shapeB[idx] == 1:
            Boardshape.append(max(shapeA[idx], shapeB[idx]))
        else:
            raise Exception(
                'shapeA and shapeB should be boardcasted, but got {} and {}'.
                format(shapeA, shapeB))
    bsA = Boardshape + list(shapeA[-2:])
    bsB = Boardshape + list(shapeB[-2:])
    return np.broadcast_to(matA, bsA), np.broadcast_to(matB, bsB)


def scipy_cholesky_solution_batch(bumat, bB, upper=True):
    bumat, bB = boardcast_shape(bumat, bB)
    ushape = bumat.shape
    bshape = bB.shape
    bumat = bumat.reshape((-1, ushape[-2], ushape[-1]))
    bB = bB.reshape((-1, bshape[-2], bshape[-1]))
    batch = 1
    for d in ushape[:-2]:
        batch *= d
    bx = []
    for b in range(batch):
        # x = scipy_cholesky_solution(bumat[b], bB[b], upper)   #large matrix result error 
        x = cholesky_solution(bumat[b], bB[b], upper)
        bx.append(x)
    return np.array(bx).reshape(bshape)


# 2D + 2D , , upper=False
class TestCholeskySolveOp(OpTest):
    """
    case 1
    """

    def config(self):
        self.y_shape = [15, 15]
        self.x_shape = [15, 5]
        self.upper = False
        self.dtype = np.float64

    def set_output(self):
        umat = self.inputs['Y']
        self.output = scipy_cholesky_solution_batch(
            umat, self.inputs['X'], upper=self.upper)

    def setUp(self):
        self.op_type = "cholesky_solve"
        self.config()

        if self.upper:
            umat = np.triu(np.random.random(self.y_shape).astype(self.dtype))
        else:
            umat = np.tril(np.random.random(self.y_shape).astype(self.dtype))

        self.inputs = {
            'X': np.random.random(self.x_shape).astype(self.dtype),
            'Y': umat
        }
        self.attrs = {'upper': self.upper}
        self.set_output()
        self.outputs = {'Out': self.output}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(['Y'], 'Out', max_relative_error=0.01)


# 3D(broadcast) + 3D, upper=True
class TestCholeskySolveOp3(TestCholeskySolveOp):
    """
    case 3
    """

    def config(self):
        self.y_shape = [1, 10, 10]
        self.x_shape = [2, 10, 5]
        self.upper = True
        self.dtype = np.float64


class TestCholeskySolveAPI(unittest.TestCase):
    def setUp(self):
        np.random.seed(2021)
        self.place = [paddle.CPUPlace()]
        # self.place = [paddle.CUDAPlace(0)]
        self.dtype = "float64"
        self.upper = True
        if core.is_compiled_with_cuda():
            self.place.append(paddle.CUDAPlace(0))

    def check_static_result(self, place):
        paddle.enable_static()
        with fluid.program_guard(fluid.Program(), fluid.Program()):
            x = fluid.data(name="x", shape=[10, 2], dtype=self.dtype)
            y = fluid.data(name="y", shape=[10, 10], dtype=self.dtype)
            z = paddle.linalg.cholesky_solve(x, y, upper=self.upper)

            x_np = np.random.random([10, 2]).astype(self.dtype)
            y_np = np.random.random([10, 10]).astype(self.dtype)
            if self.upper:
                umat = np.triu(y_np)
            else:
                umat = np.tril(y_np)
            z_np = cholesky_solution(umat, x_np, upper=self.upper)
            z2_np = scipy_cholesky_solution(umat, x_np, upper=self.upper)

            exe = fluid.Executor(place)
            fetches = exe.run(fluid.default_main_program(),
                              feed={"x": x_np,
                                    "y": umat},
                              fetch_list=[z])
            self.assertTrue(np.allclose(fetches[0], z_np))

    def test_static(self):
        for place in self.place:
            self.check_static_result(place=place)

    def test_dygraph(self):
        def run(place):
            paddle.disable_static(place)
            x_np = np.random.random([20, 2]).astype(self.dtype)
            y_np = np.random.random([20, 20]).astype(self.dtype)
            z_np = scipy_cholesky_solution(y_np, x_np, upper=self.upper)

            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
            z = paddle.linalg.cholesky_solve(x, y, upper=self.upper)

            self.assertTrue(np.allclose(z_np, z.numpy()))
            self.assertEqual(z_np.shape, z.numpy().shape)
            paddle.enable_static()

        for idx, place in enumerate(self.place):
            run(place)

    def test_boardcast(self):
        def run(place):
            paddle.disable_static()
            x_np = np.random.random([1, 30, 2]).astype(self.dtype)
            y_np = np.random.random([2, 30, 30]).astype(self.dtype)
            nx_np = np.concatenate((x_np, x_np), axis=0)

            z_sci = scipy_cholesky_solution_batch(y_np, nx_np, upper=self.upper)

            x = paddle.to_tensor(x_np)
            y = paddle.to_tensor(y_np)
            z = paddle.linalg.cholesky_solve(x, y, upper=self.upper)
            self.assertEqual(z_sci.shape, z.numpy().shape)
            self.assertTrue(np.allclose(z_sci, z.numpy()))

        for idx, place in enumerate(self.place):
            run(place)


class TestCholeskySolveOpError(unittest.TestCase):
    def test_errors(self):
        paddle.enable_static()
        with program_guard(Program(), Program()):
            # The input type of solve_op must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            y1 = fluid.create_lod_tensor(
                np.array([[-1]]), [[1]], fluid.CPUPlace())
            self.assertRaises(TypeError, paddle.linalg.cholesky_solve, x1, y1)

            # The data type of input must be float32 or float64.        
            x2 = fluid.data(name="x2", shape=[30, 30], dtype="bool")
            y2 = fluid.data(name="y2", shape=[30, 10], dtype="bool")
            self.assertRaises(TypeError, paddle.linalg.cholesky_solve, x2, y2)

            x3 = fluid.data(name="x3", shape=[30, 30], dtype="int32")
            y3 = fluid.data(name="y3", shape=[30, 10], dtype="int32")
            self.assertRaises(TypeError, paddle.linalg.cholesky_solve, x3, y3)

            x4 = fluid.data(name="x4", shape=[30, 30], dtype="float16")
            y4 = fluid.data(name="y4", shape=[30, 10], dtype="float16")
            self.assertRaises(TypeError, paddle.linalg.cholesky_solve, x4, y4)

            # The number of dimensions of input'X must be >= 2.
            x5 = fluid.data(name="x5", shape=[30], dtype="float64")
            y5 = fluid.data(name="y5", shape=[30, 30], dtype="float64")
            self.assertRaises(ValueError, paddle.linalg.cholesky_solve, x5, y5)

            # The number of dimensions of input'Y must be >= 2.
            x6 = fluid.data(name="x6", shape=[30, 30], dtype="float64")
            y6 = fluid.data(name="y6", shape=[30], dtype="float64")
            self.assertRaises(ValueError, paddle.linalg.cholesky_solve, x6, y6)

            # The inner-most 2 dimensions of input'X should be equal to each other
            x7 = fluid.data(name="x7", shape=[2, 3, 4], dtype="float64")
            y7 = fluid.data(name="y7", shape=[2, 4, 3], dtype="float64")
            self.assertRaises(ValueError, paddle.linalg.cholesky_solve, x7, y7)


if __name__ == "__main__":
    unittest.main()