api_custom_impl.cc 35.1 KB
Newer Older
1
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/lib/api_custom_impl.h"
16

17
#include "paddle/phi/api/lib/api_gen_utils.h"
18 19 20
#include "paddle/phi/api/lib/data_transform.h"
#include "paddle/phi/api/lib/kernel_dispatch.h"
#include "paddle/phi/api/lib/utils/storage.h"
21
#include "paddle/phi/core/compat/convert_utils.h"
22 23
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/core/meta_tensor.h"
24
#include "paddle/phi/infermeta/backward.h"
25 26 27
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/multiary.h"
#include "paddle/phi/infermeta/nullary.h"
28
#include "paddle/phi/infermeta/unary.h"
29

30
#include "glog/logging.h"
31

32 33 34
namespace paddle {
namespace experimental {

35
////////////////// Forward api impls //////////////////////
36

H
hong 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
Tensor conv2d_impl(const Tensor& input,
                   const Tensor& filter,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   const std::string& paddding_algorithm,
                   int groups,
                   const std::vector<int>& dilations,
                   const std::string& data_format,
                   bool use_addto,
                   int workspace_size_MB,
                   bool exhaustive_search) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(input);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv2d API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "conv2d", {kernel_backend, kernel_layout, kernel_data_type}, true);
  VLOG(6) << "conv2d API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});

  Tensor api_output;
  auto kernel_out = SetKernelOutput(kernel_backend, &api_output);
  phi::MetaTensor meta_out(kernel_out);

  phi::ConvInferMeta(MakeMetaTensor(*input_input),
                     MakeMetaTensor(*input_filter),
                     strides,
                     paddings,
                     paddding_algorithm,
                     groups,
                     dilations,
                     data_format,
                     use_addto,
                     workspace_size_MB,
                     exhaustive_search,
                     &meta_out);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out);
  }

  return api_output;
}

std::vector<std::vector<Tensor>> conv2d_grad_impl(
    const Tensor& input,
    const Tensor& filter,
    const Tensor& out_grad,
    const std::vector<int>& strides,
    const std::vector<int>& paddings,
    const std::string& paddding_algorithm,
    int groups,
    const std::vector<int>& dilations,
    const std::string& data_format,
    bool use_addto,
    int workspace_size_MB,
    bool exhaustive_search) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(input, filter, out_grad);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  VLOG(6) << "conv2d_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "conv2d_grad", {kernel_backend, kernel_layout, kernel_data_type}, true);
  VLOG(6) << "conv2d_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  phi::TensorArgDef args0 = kernel.InputAt(0);
  phi::TensorArgDef args1 = kernel.InputAt(1);
  phi::TensorArgDef args2 = kernel.InputAt(2);
  if (kernel_backend == Backend::GPU) {
    args0.backend = Backend::GPU;
    args1.backend = Backend::GPU;
    args2.backend = Backend::GPU;
  }

  auto input_input = PrepareData(input, args0, {});
  auto input_filter = PrepareData(filter, args1, {});
  auto input_out_grad = PrepareData(out_grad, args2, {});

  std::vector<std::vector<Tensor>> api_output(2);
  api_output[0].emplace_back();
  auto kernel_out_0 = SetKernelOutput(kernel_backend, &api_output[0][0]);
  api_output[1].emplace_back();
  auto kernel_out_1 = SetKernelOutput(kernel_backend, &api_output[1][0]);
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);

  phi::GeneralBinaryGradInferMeta(MakeMetaTensor(*input_input),
                                  MakeMetaTensor(*input_filter),
                                  &meta_out_0,
                                  &meta_out_1);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const std::vector<int>&,
                                    const std::vector<int>&,
                                    const std::string&,
                                    int,
                                    const std::vector<int>&,
                                    const std::string&,
                                    bool,
                                    int,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  {
    (*kernel_fn)(*dev_ctx,
                 *input_input,
                 *input_filter,
                 *input_out_grad,
                 strides,
                 paddings,
                 paddding_algorithm,
                 groups,
                 dilations,
                 data_format,
                 use_addto,
                 workspace_size_MB,
                 exhaustive_search,
                 kernel_out_0,
                 kernel_out_1);
  }

  return api_output;
}

244
Tensor copy_to_impl(const Tensor& x, Place place, bool blocking) {
245
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
246 247
  kernel_key_set.backend_set =
      kernel_key_set.backend_set | BackendSet(phi::TransToPhiBackend(place));
248
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
249
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
250 251
      "copy", kernel_key);

252 253
  VLOG(6) << "copy API kernel key: " << kernel_key;
  VLOG(6) << "copy API kernel: " << kernel;
254 255 256

  auto* dev_ctx = GetDeviceContextByBackend(kernel_key.backend());

257
  auto dense_x = TensorToDenseTensor(x);
258 259

  Tensor out;
260 261 262 263 264 265 266 267 268
  auto kernel_out = SetKernelOutput(kernel_key.backend(), &out);
  phi::MetaTensor meta_out(kernel_out);
  phi::UnchangedInferMeta(*dense_x, &meta_out);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    phi::Place,
                                    bool,
                                    phi::DenseTensor*);
269

270
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
H
hong 已提交
271

272
  (*kernel_fn)(*dev_ctx, *dense_x, place, blocking, kernel_out);
273 274 275 276

  return out;
}

277
std::vector<Tensor> split_impl(const Tensor& x,
278
                               const IntArray& num_or_sections,
279 280
                               const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(x);
281
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
282 283 284 285

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();
C
chentianyu03 已提交
286

287
  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
C
chentianyu03 已提交
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
      "split", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "split API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "split API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_x = PrepareData(x, kernel.InputAt(0), {});

  // Calculate the number of out tensors
  size_t out_number;
  if (num_or_sections.GetData().size() == 1) {
    out_number = num_or_sections.GetData()[0];
  } else {
    out_number = num_or_sections.GetData().size();
  }

  std::vector<Tensor> out;
  auto dense_outs = SetKernelOutput(out_number, kernel_backend, &out);
307
  std::vector<phi::MetaTensor> meta_outs;
308 309 310
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
C
chentianyu03 已提交
311 312
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(dense_outs[i]);
313
    meta_out_ptrs.push_back(&meta_outs.back());
C
chentianyu03 已提交
314 315
  }

316
  phi::SplitInferMeta(
317
      MakeMetaTensor(*dense_x), num_or_sections, axis, meta_out_ptrs);
C
chentianyu03 已提交
318 319

  using kernel_signature = void (*)(const platform::DeviceContext&,
320
                                    const phi::DenseTensor&,
321
                                    const phi::IntArray&,
322 323
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>&);
C
chentianyu03 已提交
324 325 326
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx,
               *dense_x,
327
               phi::IntArray(num_or_sections),
328
               phi::Scalar(axis),
C
chentianyu03 已提交
329 330 331 332
               dense_outs);

  return out;
}
333

334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
std::tuple<Tensor, Tensor, Tensor> momentum_impl(
    const Tensor& param,
    const Tensor& grad,
    const Tensor& velocity,
    const Tensor& learning_rate,
    paddle::optional<const Tensor&> master_param,
    float mu,
    bool use_nesterov,
    const std::string& regularization_method,
    float regularization_coeff,
    bool multi_precision,
    float rescale_grad) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;
  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(param);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }
  std::string kernel_name = "momentum";
  if (grad.is_selected_rows()) {
    kernel_name = "momentum_dense_param_sparse_grad";
  }
  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      kernel_name, {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << kernel_name << " API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << kernel_name << " API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_param = PrepareData(param, kernel.InputAt(0), {});
  auto input_grad = PrepareData(grad, kernel.InputAt(1), {});
  auto input_velocity = PrepareData(velocity, kernel.InputAt(2), {});
  auto input_learning_rate = PrepareData(learning_rate, kernel.InputAt(3), {});
  paddle::optional<const phi::DenseTensor&> input_master_param(paddle::none);
  auto input_master_param_ptr =
      PrepareData(master_param, kernel.InputAt(4), {});

  std::tuple<Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = input_param.get();
  auto kernel_out_1 = input_velocity.get();
  phi::DenseTensor* kernel_out_2 = nullptr;
  if (input_master_param_ptr) {
    input_master_param =
        paddle::make_optional<const phi::DenseTensor&>(*input_master_param_ptr);
    kernel_out_2 =
        paddle::make_optional<phi::DenseTensor&>(*input_master_param_ptr)
            .get_ptr();
  }

  paddle::optional<const phi::MetaTensor&> input_meta_ref_master_param(
      paddle::none);
  phi::DenseTensor dt;
  phi::MetaTensor input_meta_tmp_master_param(dt);
  if (input_master_param_ptr) {
    input_meta_tmp_master_param.set_dtype(input_master_param_ptr->dtype());
    input_meta_tmp_master_param.set_dims(input_master_param_ptr->dims());
    input_meta_tmp_master_param.set_layout(input_master_param_ptr->layout());
    input_meta_ref_master_param = input_meta_tmp_master_param;
  }
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  if (kernel_out_2) {
    phi::MetaTensor meta_out_2(kernel_out_2);
    phi::MomentumInferMeta(MakeMetaTensor(*input_param),
                           MakeMetaTensor(*input_grad),
                           MakeMetaTensor(*input_velocity),
                           MakeMetaTensor(*input_learning_rate),
                           input_meta_ref_master_param,
                           mu,
                           use_nesterov,
                           regularization_method,
                           regularization_coeff,
                           multi_precision,
                           rescale_grad,
                           &meta_out_0,
                           &meta_out_1,
                           &meta_out_2);
  } else {
    phi::MomentumInferMeta(MakeMetaTensor(*input_param),
                           MakeMetaTensor(*input_grad),
                           MakeMetaTensor(*input_velocity),
                           MakeMetaTensor(*input_learning_rate),
                           input_meta_ref_master_param,
                           mu,
                           use_nesterov,
                           regularization_method,
                           regularization_coeff,
                           multi_precision,
                           rescale_grad,
                           &meta_out_0,
                           &meta_out_1,
                           nullptr);
  }

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    paddle::optional<const phi::DenseTensor&>,
                                    float,
                                    bool,
                                    const std::string&,
                                    float,
                                    bool,
                                    float,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  (*kernel_fn)(*dev_ctx,
               *input_param,
               *input_grad,
               *input_velocity,
               *input_learning_rate,
               input_master_param,
               mu,
               use_nesterov,
               regularization_method,
               regularization_coeff,
               multi_precision,
               rescale_grad,
               kernel_out_0,
               kernel_out_1,
               kernel_out_2);

  return api_output;
}

477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
////////////////// Backward(grad) api impls //////////////////////

// TODO(chenweihang):  the original sum grad op can support higher-level
// differentiation,
// but if we use this impl, it will not support. We need to be able to reuse
// the autograd API here, which is not yet implemented
// TODO(chenweihang): we should support call generated api in custom api impl
std::vector<Tensor> add_n_grad_impl(const std::vector<Tensor>& x,
                                    const Tensor& out_grad) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(out_grad);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();

  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "scale", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "add_n_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "add_n_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_out_grad = PrepareData(out_grad, kernel.InputAt(0), {});

  size_t out_number = x.size();
  std::vector<Tensor> x_grad;
  auto dense_x_grad = SetKernelOutput(out_number, kernel_backend, &x_grad);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::Scalar&,
                                    float,
                                    bool,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();

  for (auto* dense_x_grad_t : dense_x_grad) {
    phi::MetaTensor meta_out(dense_x_grad_t);
    phi::UnchangedInferMeta(MakeMetaTensor(*dense_out_grad), &meta_out);
    (*kernel_fn)(
        *dev_ctx, *dense_out_grad, phi::Scalar(1.0), 0.0, true, dense_x_grad_t);
  }

  return x_grad;
}

H
hong 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653
std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> batch_norm_impl(
    const Tensor& x,
    const Tensor& scale,
    const Tensor& bias,
    const Tensor& mean,
    const Tensor& variance,
    float momentum,
    float epsilon,
    const std::string& data_layout,
    bool is_test,
    bool use_global_stats,
    bool trainable_statistics,
    bool fuse_with_relu) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  kernel_data_type = ParseDataType(x);

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(x);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "batch_norm", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "batch_norm API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "batch_norm API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_x = PrepareData(x, kernel.InputAt(0), {});
  auto input_scale = PrepareData(scale, kernel.InputAt(1), {});
  auto input_bias = PrepareData(bias, kernel.InputAt(2), {});
  auto input_mean = PrepareData(mean, kernel.InputAt(3), {});
  auto input_variance = PrepareData(variance, kernel.InputAt(4), {});

  std::tuple<Tensor, Tensor, Tensor, Tensor, Tensor, Tensor> api_output;
  auto kernel_out_0 = SetKernelOutput(kernel_backend, &std::get<0>(api_output));
  std::get<1>(api_output).set_impl(mean.impl());
  std::get<2>(api_output).set_impl(variance.impl());
  auto kernel_out_1 = SetKernelOutput(kernel_backend, &std::get<1>(api_output));
  auto kernel_out_2 = SetKernelOutput(kernel_backend, &std::get<2>(api_output));
  auto kernel_out_3 = SetKernelOutput(kernel_backend, &std::get<3>(api_output));
  auto kernel_out_4 = SetKernelOutput(kernel_backend, &std::get<4>(api_output));
  auto kernel_out_5 = SetKernelOutput(kernel_backend, &std::get<5>(api_output));
  phi::MetaTensor meta_out_0(kernel_out_0);
  phi::MetaTensor meta_out_1(kernel_out_1);
  phi::MetaTensor meta_out_2(kernel_out_2);
  phi::MetaTensor meta_out_3(kernel_out_3);
  phi::MetaTensor meta_out_4(kernel_out_4);
  phi::MetaTensor meta_out_5(kernel_out_5);

  phi::BatchNormInferMeta(MakeMetaTensor(*input_x),
                          MakeMetaTensor(*input_scale),
                          MakeMetaTensor(*input_bias),
                          MakeMetaTensor(*input_mean),
                          MakeMetaTensor(*input_variance),
                          momentum,
                          epsilon,
                          data_layout,
                          is_test,
                          use_global_stats,
                          trainable_statistics,
                          fuse_with_relu,
                          &meta_out_0,
                          &meta_out_1,
                          &meta_out_2,
                          &meta_out_3,
                          &meta_out_4,
                          &meta_out_5);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    const phi::DenseTensor&,
                                    float,
                                    float,
                                    const std::string&,
                                    bool,
                                    bool,
                                    bool,
                                    bool,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*,
                                    phi::DenseTensor*);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  {
    (*kernel_fn)(*dev_ctx,
                 *input_x,
                 *input_scale,
                 *input_bias,
                 *input_mean,
                 *input_variance,
                 momentum,
                 epsilon,
                 data_layout,
                 is_test,
                 use_global_stats,
                 trainable_statistics,
                 fuse_with_relu,
                 kernel_out_0,
                 kernel_out_1,
                 kernel_out_2,
                 kernel_out_3,
                 kernel_out_4,
                 kernel_out_5);
  }

  return api_output;
}

654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
std::vector<Tensor> concat_grad_impl(const std::vector<Tensor>& x,
                                     const Tensor& out_grad,
                                     const Scalar& axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(out_grad);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();

  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "concat_grad", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "concat_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "concat_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  // std::unique_ptr<std::vector<phi::DenseTensor>>
  auto dense_x = PrepareData(x, kernel.InputAt(0), {});
  auto dense_out_grad = PrepareData(out_grad, kernel.InputAt(1), {});

  // Calculate the number of out tensors
  size_t out_number = x.size();
  std::vector<Tensor> x_grad;
  auto dense_x_grad = SetKernelOutput(out_number, kernel_backend, &x_grad);

  std::vector<phi::MetaTensor> meta_x;
  meta_x.reserve(x.size());
  std::vector<phi::MetaTensor*> meta_x_ptrs;
  meta_x_ptrs.reserve(x.size());
  for (const auto& t : *dense_x) {
    meta_x.push_back(t);
    meta_x_ptrs.push_back(&meta_x.back());
  }

  std::vector<phi::MetaTensor> meta_x_grad;
  meta_x_grad.reserve(x.size());
  std::vector<phi::MetaTensor*> meta_x_grad_ptrs;
  meta_x_grad_ptrs.reserve(x.size());
  for (size_t i = 0; i < out_number; ++i) {
    meta_x_grad.push_back(*dense_x_grad[i]);
    meta_x_grad_ptrs.push_back(&meta_x_grad.back());
  }

  phi::UnchangedMultiInferMeta(meta_x_ptrs, meta_x_grad_ptrs);

  std::vector<const phi::DenseTensor*> dense_x_ptr;
  dense_x_ptr.reserve(x.size());
  for (const auto& t : *dense_x) {
    dense_x_ptr.push_back(&t);
  }

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const std::vector<const phi::DenseTensor*>&,
                                    const phi::DenseTensor&,
                                    const phi::Scalar&,
                                    std::vector<phi::DenseTensor*>);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(
      *dev_ctx, dense_x_ptr, *dense_out_grad, phi::Scalar(axis), dense_x_grad);

  return x_grad;
}

719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
std::vector<Tensor> stack_grad_impl(const std::vector<Tensor>& x,
                                    const Tensor& out_grad,
                                    int axis) {
  auto kernel_key_set = ParseKernelKeyByInputArgs(out_grad);
  auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();

  Backend kernel_backend = kernel_key.backend();
  DataLayout kernel_layout = kernel_key.layout();
  DataType kernel_data_type = kernel_key.dtype();

  auto kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "stack_grad", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "stack_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "stack_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto dense_out_grad = PrepareData(out_grad, kernel.InputAt(0), {});

  size_t out_number = x.size();
  std::vector<Tensor> x_grad;
  auto dense_x_grad = SetKernelOutput(out_number, kernel_backend, &x_grad);
  std::vector<phi::MetaTensor> meta_x_grad;
  meta_x_grad.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_x_grad_ptrs;
  meta_x_grad_ptrs.reserve(out_number);
  for (size_t i = 0; i < out_number; ++i) {
    meta_x_grad.push_back(dense_x_grad[i]);
    meta_x_grad_ptrs.push_back(&meta_x_grad.back());
  }

  phi::StackGradInferMeta(
      MakeMetaTensor(*dense_out_grad), axis, meta_x_grad_ptrs);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const phi::DenseTensor&,
                                    int axis,
                                    std::vector<phi::DenseTensor*>);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, *dense_out_grad, axis, dense_x_grad);

  return x_grad;
}

Y
YuanRisheng 已提交
764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911
std::vector<Tensor> meshgrid_impl(const std::vector<Tensor>& inputs) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(inputs);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "meshgrid", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "meshgrid API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "meshgrid API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_inputs_vec = PrepareData(inputs, kernel.InputAt(0), {});
  std::vector<const phi::DenseTensor*> input_inputs(input_inputs_vec->size());
  for (size_t i = 0; i < input_inputs.size(); ++i) {
    input_inputs[i] = &input_inputs_vec->at(i);
  }

  auto x_meta_vec = MakeMetaTensor(input_inputs);
  std::vector<phi::MetaTensor*> inputs_metas(x_meta_vec.size());
  for (size_t i = 0; i < x_meta_vec.size(); ++i) {
    inputs_metas[i] = &x_meta_vec[i];
  }

  // Calculate the number of out tensors
  size_t out_number = inputs.size();

  std::vector<Tensor> out;
  auto dense_outs = SetKernelOutput(out_number, kernel_backend, &out);

  std::vector<phi::MetaTensor> meta_outs;
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(dense_outs[i]);
    meta_out_ptrs.push_back(&meta_outs.back());
  }
  phi::MeshgridInferMeta(inputs_metas, meta_out_ptrs);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const std::vector<const phi::DenseTensor*>&,
                                    std::vector<phi::DenseTensor*>&);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, input_inputs, dense_outs);

  return out;
}

std::vector<Tensor> meshgrid_grad_impl(
    const std::vector<Tensor>& inputs,
    const std::vector<Tensor>& outputs_grad) {
  Backend kernel_backend = Backend::UNDEFINED;
  DataLayout kernel_layout = DataLayout::UNDEFINED;
  DataType kernel_data_type = DataType::UNDEFINED;

  if (kernel_backend == Backend::UNDEFINED ||
      kernel_layout == DataLayout::UNDEFINED ||
      kernel_data_type == DataType::UNDEFINED) {
    auto kernel_key_set = ParseKernelKeyByInputArgs(inputs, outputs_grad);
    auto kernel_key = kernel_key_set.GetHighestPriorityKernelKey();
    if (kernel_backend == Backend::UNDEFINED) {
      kernel_backend = kernel_key.backend();
    }
    if (kernel_layout == DataLayout::UNDEFINED) {
      kernel_layout = kernel_key.layout();
    }
    if (kernel_data_type == DataType::UNDEFINED) {
      kernel_data_type = kernel_key.dtype();
    }
  }

  const auto& kernel = phi::KernelFactory::Instance().SelectKernelOrThrowError(
      "meshgrid_grad", {kernel_backend, kernel_layout, kernel_data_type});
  VLOG(6) << "meshgrid_grad API kernel key: [" << kernel_backend << ", "
          << kernel_layout << ", " << kernel_data_type << "]";
  VLOG(6) << "meshgrid_grad API kernel: " << kernel;

  auto* dev_ctx = GetDeviceContextByBackend(kernel_backend);

  auto input_inputs_vec = PrepareData(inputs, kernel.InputAt(0), {});
  std::vector<const phi::DenseTensor*> input_inputs(input_inputs_vec->size());
  for (size_t i = 0; i < input_inputs.size(); ++i) {
    input_inputs[i] = &input_inputs_vec->at(i);
  }
  auto input_outputs_grad_vec =
      PrepareData(outputs_grad, kernel.InputAt(1), {});
  std::vector<const phi::DenseTensor*> input_outputs_grad(
      input_outputs_grad_vec->size());
  for (size_t i = 0; i < input_outputs_grad.size(); ++i) {
    input_outputs_grad[i] = &input_outputs_grad_vec->at(i);
  }

  size_t out_number = inputs.size();
  std::vector<Tensor> api_output;
  auto kernel_out = SetKernelOutput(out_number, kernel_backend, &api_output);

  auto inputs_meta_vec = MakeMetaTensor(input_inputs);
  std::vector<phi::MetaTensor*> inputs_metas(inputs_meta_vec.size());
  for (size_t i = 0; i < inputs_meta_vec.size(); ++i) {
    inputs_metas[i] = &inputs_meta_vec[i];
  }

  auto outputs_grad_meta_vec = MakeMetaTensor(input_outputs_grad);
  std::vector<phi::MetaTensor*> outputs_grad_metas(
      outputs_grad_meta_vec.size());
  for (size_t i = 0; i < outputs_grad_meta_vec.size(); ++i) {
    outputs_grad_metas[i] = &outputs_grad_meta_vec[i];
  }

  std::vector<phi::MetaTensor> meta_outs;
  meta_outs.reserve(out_number);
  std::vector<phi::MetaTensor*> meta_out_ptrs;
  meta_out_ptrs.reserve(out_number);
  for (size_t i = 0; i < out_number; ++i) {
    meta_outs.push_back(kernel_out[i]);
    meta_out_ptrs.push_back(&meta_outs.back());
  }

  phi::MeshgridGradInferMeta(inputs_metas, outputs_grad_metas, meta_out_ptrs);

  using kernel_signature = void (*)(const platform::DeviceContext&,
                                    const std::vector<const phi::DenseTensor*>&,
                                    const std::vector<const phi::DenseTensor*>&,
                                    std::vector<phi::DenseTensor*>&);
  auto* kernel_fn = kernel.GetVariadicKernelFn<kernel_signature>();
  (*kernel_fn)(*dev_ctx, input_inputs, input_outputs_grad, kernel_out);

  return api_output;
}

912 913
}  // namespace experimental
}  // namespace paddle