broadcast_tensors_grad_kernel.cc 7.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/phi/kernels/broadcast_tensors_grad_kernel.h"

#include <vector>
18

19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/phi/common/float16.h"
#include "paddle/phi/core/dense_tensor.h"
#include "paddle/phi/core/enforce.h"
#include "paddle/phi/core/kernel_registry.h"
#include "paddle/phi/kernels/funcs/eigen/common.h"
#include "paddle/phi/kernels/funcs/eigen/eigen_function.h"
#include "paddle/phi/kernels/funcs/math_function.h"

#define SWITCH_RESHAPE_DIMS(n)                                                \
  case n: {                                                                   \
    Eigen::DSizes<Eigen::DenseIndex, n> reshape_dims;                         \
    for (size_t i = 0; i < reshape_dims_vec.size(); ++i) {                    \
      reshape_dims[i] = reshape_dims_vec[i];                                  \
    }                                                                         \
    dX.device(place) =                                                        \
        dOut.reshape(reshape_dims).sum(reduce_dims).reshape(dX.dimensions()); \
    break;                                                                    \
  }

#define UPPER_SWITCH_REDUCE_DIMS(m)                       \
  case m: {                                               \
    Eigen::DSizes<Eigen::DenseIndex, m> reduce_dims;      \
    for (size_t i = 0; i < reduce_dims_vec.size(); ++i) { \
      reduce_dims[i] = reduce_dims_vec[i];                \
    }                                                     \
    switch (reshape_size) {
#define LOWER_SWITCH_REDUCE_DIMS                             \
  default: {                                                 \
    PADDLE_THROW(errors::InvalidArgument(                    \
        "Detected reshape size: %d out of range"             \
        "Minimum value should be larger than reduce size %d" \
        "While maximum supported is: 5",                     \
        reshape_size,                                        \
        reduce_size));                                       \
  }                                                          \
    }                                                        \
    break;                                                   \
    }

namespace phi {

template <typename T, typename Context>
void BroadcastTensorsGradKernel(const Context& ctx,
63
                                const std::vector<const DenseTensor*>& dout,
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
                                std::vector<DenseTensor*> dx) {
  // Find reduce dimensions
  const auto& in_tensors = dout;
  auto& out_tensors = dx;

  size_t num_ins = in_tensors.size();

  PADDLE_ENFORCE_GT(
      num_ins,
      1,
      errors::InvalidArgument(
          "Expected at least 2 input tensors, but only received d%.",
          in_tensors.size()));

  PADDLE_ENFORCE_EQ(num_ins,
                    out_tensors.size(),
                    errors::InvalidArgument(
                        "BroadcastTensorsOp expects equal number of inputs and "
                        "outputs, but received: %d inputs v.s %d outputs",
                        num_ins,
                        out_tensors.size()));

  // For each In-Out tensor pair,
  // Prepare and apply broadcast dims array
  for (size_t i = 0; i < num_ins; i++) {
89
    const auto* input_tensor = in_tensors[i];
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
    auto* output_tensor = out_tensors[i];

    const auto& input_dims = input_tensor->dims();
    const auto& output_dims = output_tensor->dims();

    int in_rank = input_dims.size();
    int out_rank = output_dims.size();

    // BroadcastTensorsGrad is simply a reduce_sum along broadcasted axes
    // Here we perform the following Eigen operations:
    // dOut(Flattened) -> reshape(reshape_dims) -> reduce(reduce_dims) ->
    // reshape(dX_shape) -> dX
    // Note the last "reshape(dX_shape)" will be performed implicitly,
    // and we only need to collect reduce_dims and reshape_dims
    std::vector<int> reduce_dims_vec;
    std::vector<int> reshape_dims_vec;
    for (int j = 0; j < in_rank; j++) {
      int out_axis = out_rank - j - 1;
      int in_axis = in_rank - j - 1;

      reshape_dims_vec.push_back(input_dims[j]);
      if (out_axis < 0 || output_dims[out_axis] != input_dims[in_axis]) {
        reduce_dims_vec.push_back(in_axis);
      }
    }

    size_t reduce_size = reduce_dims_vec.size();
    size_t reshape_size = reshape_dims_vec.size();
    bool just_copy = (reduce_dims_vec.size() == 0);
    ctx.template Alloc<T>(output_tensor);
    if (just_copy) {
      // If this turns out to be a No-Op, simply perform a tensor copy
      paddle::framework::TensorCopy(
          *input_tensor, ctx.GetPlace(), ctx, output_tensor);
    } else {
      PADDLE_ENFORCE_GE(
          reduce_dims_vec.size(),
          1,
          errors::InvalidArgument("The number of dimensions of the input "
                                  "'Out@GRAD' for Op(broadcast_tensors)"
                                  " must be greater than or equal to 1, but "
                                  "the value received is %d.",
                                  reduce_dims_vec.size()));
      PADDLE_ENFORCE_LE(
          reduce_dims_vec.size(),
          5,
          errors::InvalidArgument(
              "The number of dimensions of the input 'Out@GRAD' "
              "for Op(broadcast_tensors) must be less than or equal "
              "to 5, but the value received is %d.",
              reduce_dims_vec.size()));

      // Overall:
      // dOut(Flattened) -> reshape(reshape_dims) -> reduce(reduce_dims) ->
      // reshape(dX_shape) -> dX
      auto dX = EigenVector<T>::Flatten(*output_tensor);
      auto dOut = EigenVector<T>::Flatten(*input_tensor);
      auto& place = *ctx.eigen_device();

      // Expand ReduceSize and ReshapeSize into static values
      switch (reduce_size) {
        UPPER_SWITCH_REDUCE_DIMS(1)
        SWITCH_RESHAPE_DIMS(1)
        SWITCH_RESHAPE_DIMS(2)
        SWITCH_RESHAPE_DIMS(3)
        SWITCH_RESHAPE_DIMS(4)
        SWITCH_RESHAPE_DIMS(5)
        LOWER_SWITCH_REDUCE_DIMS

        UPPER_SWITCH_REDUCE_DIMS(2)
        SWITCH_RESHAPE_DIMS(2)
        SWITCH_RESHAPE_DIMS(3)
        SWITCH_RESHAPE_DIMS(4)
        SWITCH_RESHAPE_DIMS(5)
        LOWER_SWITCH_REDUCE_DIMS

        UPPER_SWITCH_REDUCE_DIMS(3)
        SWITCH_RESHAPE_DIMS(3)
        SWITCH_RESHAPE_DIMS(4)
        SWITCH_RESHAPE_DIMS(5)
        LOWER_SWITCH_REDUCE_DIMS

        UPPER_SWITCH_REDUCE_DIMS(4)
        SWITCH_RESHAPE_DIMS(4)
        SWITCH_RESHAPE_DIMS(5)
        LOWER_SWITCH_REDUCE_DIMS

        UPPER_SWITCH_REDUCE_DIMS(5)
        SWITCH_RESHAPE_DIMS(5)
        LOWER_SWITCH_REDUCE_DIMS

        default: {
          PADDLE_THROW(
              errors::InvalidArgument("Detected reduce size: %d out of range"
                                      "While maximum supported is: 5",
                                      reduce_size));
        }
      }
    }
  }
}

}  // namespace phi

PD_REGISTER_KERNEL(broadcast_tensors_grad,
                   CPU,
                   ALL_LAYOUT,
                   phi::BroadcastTensorsGradKernel,
                   int,
                   int64_t,
                   float,
                   double,
                   phi::dtype::float16) {}